
INTRODUCTION TO 
DATA SCIENCE
JOHN P DICKERSON

PREM SAGGAR

Lecture #6 – 9/17/2018

CMSC320
Mondays and Wednesdays 
2pm – 3:15pm



ANNOUNCEMENTS
Project 1 is out!
• Announced on ELMS and Piazza
• https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project1

• Due date is September 28th
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https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project1


LAST CLASS/THIS CLASS
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including 
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data 
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4.    Apache Spark
Sets of objects or key-value pairs 
MapReduce and SQL-like operations
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TABLES 
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or 

Tuples

Variables
(also called Attributes, or 

Columns, or Labels)

Special Column, called “Index”, or 
“ID”, or “Key”

Usually, no duplicates Allowed



PANDAS: SERIES

§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in 

reduced functionality
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Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but 
result in reduced functionality)
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PANDAS: DATAFRAME
§ Each column can have a different 

type
§ Row and Column index
§ Mutable size: insert and delete 

columns

§ Note the use of word “index” for 
what we called “key”
§ Relational databases use “index” 

to mean something else

§ Non-unique index values allowed
§ May raise an exception for some 

operations
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DataFrame

• NumPy array-like

• Each column can have a 
different type

• Row and column index

• Size mutable: insert and delete 
columns 
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foo bar baz quxcolumns



RECAP: GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’



RECAP: GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4



RECAP: GROUP BY
Group tuples together by 
column/dimension
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4



RECAP: GROUP BY 
AGGREGATE
Compute one aggregate
Per group
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ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C
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ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4



TIDY DATA

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)
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age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

Observations

Variables



TODAY’S LECTURE
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Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision



TODAY’S LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins
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RELATION
Simplest relation: a table aka tabular data full of unique tuples
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ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)



PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different 
table’s primary key
• A table can have multiple foreign keys
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico



SEARCHING FOR 
ELEMENTS
Find all people with nationality Canada (nat_id = 2):

??????????????? 
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)



INDEXES
Like a hidden sorted map of references to a specific attribute 
(column) in a table; allows O(log n) lookup instead of O(n)
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loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512



INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC424 or CMSC420)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!
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RELATIONSHIPS
Primary keys and foreign keys define interactions between 
different tables aka entities.  Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one 

• Many-to-many

Connects (one, many) of the rows in one table to (one, many) 
of the rows in another table
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ONE-TO-MANY & 
MANY-TO-ONE
One person can have one nationality in this example, but one 
nationality can include many people.
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ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality



ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the 
first tables corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the 
rows into one table?) unless:
• Split a big row between SSD and HDD or distributed

• Restrict access to part of a row (some DBMSs allow column-level 
access control, but not all)

• Caching, partitioning, & serious stuff: take CMSC424
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Person SSN



ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the 
table.  Each person has at most one entry in the table.

Is this data tidy?
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Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.



MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats 
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ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color



ASSOCIATIVE TABLES

Primary key  ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s)   ???????????
• Cat ID and Color ID
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Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors



ASIDE: PANDAS
So, this kinda feels like pandas …
• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:
• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):
• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB 
level, then fine-grained slicing and dicing and viz with pandas
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SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive 

locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)
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HOW A RELATIONAL DB FITS 
INTO YOUR WORKFLOW
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SQLite CLI & GUI 
Frontend

SQLite FilePython

Raw Input

Structured output 
(trained classifiers, 

JSON for D3, 
visualizations)

SQL

SQ
L

Persists!

Persists!



CRASH COURSE IN 
SQL (IN PYTHON)

Cursor: temporary work area in system memory for 
manipulating SQL statements and return values
If you do not close the connection (conn.close()), any 
outstanding transaction is rolled back
• (More on this in a bit.)
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import sqlite3

# Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

# do cool stuff
conn.close()



CRASH COURSE IN 
SQL (IN PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability 30

# Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats



CRASH COURSE IN 
SQL (IN PYTHON)
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# Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

# Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin



CRASH COURSE IN 
SQL (IN PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)
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# Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

# Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin



JOINING DATA
A join operation merges two or more tables into a single 
relation.  Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the 
tables together
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INNER JOINS

Inner join returns merged rows that share the same value in 
the column they are being joined on (id and cat_id).
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017



INNER JOINS
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# Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”, 

left_on = “id”, right_on = ”cat_id”)

# Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT 
*

FROM 
cats, visits

WHERE
cats.id == visits.cat_id

”””)



LEFT JOINS
Inner joins are the most common type of joins (get results 
that appear in both tables)
Left joins: all the results from the left table, only some
matching results from the right table
Left join (cats, visits) on (id, cat_id)  ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL



RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????
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id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats
visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017



LEFT/RIGHT JOINS
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# Left join in pandas
df_cats.merge(df_visits, how = “left”, 

left_on = “id”, right_on = ”cat_id”)

# Right join in pandas
df_cats.merge(df_visits, how = “right”, 

left_on = “id”, right_on = ”cat_id”)

# Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

# Right join in SQL / SQLite via Python
L



FULL OUTER JOIN
Combines the left and the right join          ???????????
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id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

# Outer join in pandas
df_cats.merge(df_visits, how = “outer”, 

left_on = “id”, right_on = ”cat_id”)



GOOGLE IMAGE SEARCH ONE 
SLIDE SQL JOIN VISUAL
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Image credit: http://www.dofactory.com/sql/join



RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
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# Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

# Store in a DataFrame
df = sqldf(q, locals())



NEXT CLASS:
EXPLORATORY ANALYSIS
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