
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

PREM SAGGAR

Lecture #6 – 9/17/2018

CMSC320
Mondays and Wednesdays
2pm – 3:15pm

ANNOUNCEMENTS
Project 1 is out!
• Announced on ELMS and Piazza
• https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project1

• Due date is September 28th

2

https://github.com/JohnDickerson/cmsc320-fall2018/tree/master/project1

LAST CLASS/THIS CLASS
1. NumPy: Python Library for Manipulating nD Arrays

Multidimensional Arrays, and a variety of operations including
Linear Algebra

2. Pandas: Python Library for Manipulating Tabular Data
Series, Tables (also called DataFrames)
Many operations to manipulate and combine tables/series

3. Relational Databases
Tables/Relations, and SQL (similar to Pandas operations)

4. Apache Spark
Sets of objects or key-value pairs
MapReduce and SQL-like operations

3

TABLES

4

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Observations,
Rows, or

Tuples

Variables
(also called Attributes, or

Columns, or Labels)

Special Column, called “Index”, or
“ID”, or “Key”

Usually, no duplicates Allowed

PANDAS: SERIES

§ Subclass of numpy.ndarray

§ Data: any type

§ Index labels need not be ordered

§ Duplicates possible but result in

reduced functionality

5

Series

• Subclass of numpy.ndarray

• Data: any type

• Index labels need not be ordered

• Duplicates are possible (but
result in reduced functionality)

5

6

12

-5

6.7

A

B

C

D

E

valuesindex

PANDAS: DATAFRAME
§ Each column can have a different

type
§ Row and Column index
§ Mutable size: insert and delete

columns

§ Note the use of word “index” for
what we called “key”
§ Relational databases use “index”

to mean something else

§ Non-unique index values allowed
§ May raise an exception for some

operations

6

DataFrame

• NumPy array-like

• Each column can have a
different type

• Row and column index

• Size mutable: insert and delete
columns

0

4

8

-12

16

A

B

C

D

E

index

x

y

z

w

a

2.7

6

10

NA

18

True

True

False

False

False

foo bar baz quxcolumns

RECAP: GROUP BY
Group tuples together by
column/dimension

7

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

ID B C
1 3 6.6
3 4 3.1
4 3 8.0
7 4 2.3
8 3 8.0

ID B C
2 2 4.7
5 1 1.2
6 2 2.5

A = foo

A = bar
By ‘A’

RECAP: GROUP BY
Group tuples together by
column/dimension

8

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘B’

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

RECAP: GROUP BY
Group tuples together by
column/dimension

9

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

By ‘A’, ‘B’

ID C
5 1.2

A = bar, B = 1

ID C
2 4.7
6 2.5

ID C
3 3.1
7 2.3

ID C
1 6.6
4 8.0
8 8.0

A = foo, B = 3

A = bar, B = 2

A = foo, B = 4

RECAP: GROUP BY
AGGREGATE
Compute one aggregate
Per group

10

ID A B C
1 foo 3 6.6
2 bar 2 4.7
3 foo 4 3.1
4 foo 3 8.0
5 bar 1 1.2
6 bar 2 2.5
7 foo 4 2.3
8 foo 3 8.0

Group by ‘B’
Sum on C

10

ID A C
5 bar 1.2

B = 1

ID A C
2 bar 4.7
6 bar 2.5

ID A C
3 foo 3.1
7 foo 2.3

ID A C
1 foo 6.6
4 foo 8.0
8 foo 8.0

B = 3

B = 2

B = 4

Sum (C)
1.2

B = 1

B = 3

B = 2

B = 4

Sum (C)
22.6

Sum (C)
7.2

Sum (C)
5.4

TIDY DATA

But also:
• Names of files/DataFrames = description of one dataset
• Enforce one data type per dataset (ish)

11

age wgt_kg hgt_cm

12.2 42.3 145.1

11.0 40.8 143.8

15.6 65.3 165.3

35.1 84.2 185.8

Labels

Observations

Variables

TODAY’S LECTURE

12

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

TODAY’S LECTURE
Relational data:
• What is a relation, and how do they interact?

Querying databases:
• SQL

• SQLite
• How does this relate to pandas?

Joins

13

RELATION
Simplest relation: a table aka tabular data full of unique tuples

14

ID age wgt_kg hgt_cm

1 12.2 42.3 145.1

2 11.0 40.8 143.8

3 15.6 65.3 165.3

4 35.1 84.2 185.8

Labels

Observations
(called tuples)

Variables
(called attributes)

PRIMARY KEYS

The primary key is a unique identifier for every tuple in a relation

• Each tuple has exactly one primary key

15

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

FOREIGN KEYS

Foreign keys are attributes (columns) that point to a different
table’s primary key
• A table can have multiple foreign keys

16

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

SEARCHING FOR
ELEMENTS
Find all people with nationality Canada (nat_id = 2):

???????????????

17

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

O(n)

INDEXES
Like a hidden sorted map of references to a specific attribute
(column) in a table; allows O(log n) lookup instead of O(n)

18

loc ID age wgt_kg hgt_cm nat_id

0 1 12.2 42.3 145.1 1

128 2 11.0 40.8 143.8 2

256 3 15.6 65.3 165.3 2

384 4 35.1 84.2 185.8 1

512 5 18.1 62.2 176.2 3

640 6 19.6 82.1 180.1 1

nat_id locs
1 0, 384,

640
2 128, 256
3 512

INDEXES
Actually implemented with data structures like B-trees
• (Take courses like CMSC424 or CMSC420)

But: indexes are not free
• Takes memory to store

• Takes time to build
• Takes time to update (add/delete a row, update the column)

But, but: one index is (mostly) free
• Index will be built automatically on the primary key

Think before you build/maintain an index on other attributes!

19

RELATIONSHIPS
Primary keys and foreign keys define interactions between
different tables aka entities. Four types:
• One-to-one

• One-to-one-or-none

• One-to-many and many-to-one

• Many-to-many

Connects (one, many) of the rows in one table to (one, many)
of the rows in another table

20

ONE-TO-MANY &
MANY-TO-ONE
One person can have one nationality in this example, but one
nationality can include many people.

21

ID age wgt_kg hgt_cm nat_id

1 12.2 42.3 145.1 1

2 11.0 40.8 143.8 1

3 15.6 65.3 165.3 2

4 35.1 84.2 185.8 1

5 18.1 62.2 176.2 3

6 19.6 82.1 180.1 1

ID Nationality
1 USA
2 Canada
3 Mexico

Person Nationality

ONE-TO-ONE
Two tables have a one-to-one relationship if every tuple in the
first tables corresponds to exactly one entry in the other

In general, you won’t be using these (why not just merge the
rows into one table?) unless:
• Split a big row between SSD and HDD or distributed

• Restrict access to part of a row (some DBMSs allow column-level
access control, but not all)

• Caching, partitioning, & serious stuff: take CMSC424

22

Person SSN

ONE-TO-ONE-OR-NONE
Say we want to keep track of people’s cats:

People with IDs 2 and 3 do not own cats*, and are not in the
table. Each person has at most one entry in the table.

Is this data tidy?

23

Person ID Cat1 Cat2
1 Chairman Meow Fuzz Aldrin
4 Anderson Pooper Meowly Cyrus
5 Gigabyte Megabyte

Person Cat

*nor do they have hearts, apparently.

MANY-TO-MANY
Say we want to keep track of people’s cats’ colorings:

One column per color, too many columns, too many nulls
Each cat can have many colors, and each color many cats

24

ID Name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

Cat Color

ASSOCIATIVE TABLES

Primary key ???????????
• [Cat ID, Color ID] (+ [Color ID, Cat ID], case-dependent)

Foreign key(s) ???????????
• Cat ID and Color ID

25

Cat ID Color ID Amount
1 1 50
1 2 50
2 2 20
2 4 40
2 5 40
3 1 100

ID Name

1 Megabyte

2 Meowly Cyrus

3 Fuzz Aldrin

4 Chairman Meow

5 Anderson Pooper

6 Gigabyte

ID Name

1 Black

2 Brown

3 White

4 Orange

5 Neon Green

6 Invisible

Cats Colors

ASIDE: PANDAS
So, this kinda feels like pandas …
• And pandas kinda feels like a relational data system …

Pandas is not strictly a relational data system:
• No notion of primary / foreign keys

It does have indexes (and multi-column indexes):
• pandas.Index: ordered, sliceable set storing axis labels

• pandas.MultiIndex: hierarchical index

Rule of thumb: do heavy, rough lifting at the relational DB
level, then fine-grained slicing and dicing and viz with pandas

26

SQLITE
On-disk relational database management system (RDMS)
• Applications connect directly to a file

Most RDMSs have applications connect to a server:
• Advantages include greater concurrency, less restrictive

locking

• Disadvantages include, for this class, setup time J
Installation:
• conda install -c anaconda sqlite

• (Should come preinstalled, I think?)

All interactions use Structured Query Language (SQL)

27

HOW A RELATIONAL DB FITS
INTO YOUR WORKFLOW

28

SQLite CLI & GUI
Frontend

SQLite FilePython

Raw Input

Structured output
(trained classifiers,

JSON for D3,
visualizations)

SQL

SQ
L

Persists!

Persists!

CRASH COURSE IN
SQL (IN PYTHON)

Cursor: temporary work area in system memory for
manipulating SQL statements and return values
If you do not close the connection (conn.close()), any
outstanding transaction is rolled back
• (More on this in a bit.)

29

import sqlite3

Create a database and connect to it
conn = sqlite3.connect(“cmsc320.db”)
cursor = conn.cursor()

do cool stuff
conn.close()

CRASH COURSE IN
SQL (IN PYTHON)

Capitalization doesn’t matter for SQL reserved words
• SELECT = select = SeLeCt
Rule of thumb: capitalize keywords for readability 30

Make a table
cursor.execute(“””
CREATE TABLE cats (

id INTEGER PRIMARY KEY,
name TEXT

)”””)

?????????

id name
cats

CRASH COURSE IN
SQL (IN PYTHON)

31

Insert into the table
cursor.execute(“INSERT INTO cats VALUE (1, ’Megabyte’)”)
cursor.execute(“INSERT INTO cats VALUE (2, ‘Meowly Cyrus’)”)
cursor.execute(“INSERT INTO cats VALUE (3, ‘Fuzz Aldrin’)”)
conn.commit()

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin

Delete row(s) from the table
cursor.execute(“DELETE FROM cats WHERE id == 2”);
conn.commit()

id name
1 Megabyte
3 Fuzz Aldrin

CRASH COURSE IN
SQL (IN PYTHON)

index_col=“id”: treat column with label “id” as an index
index_col=1: treat column #1 (i.e., “name”) as an index
(Can also do multi-indexing.)

32

Read all rows from a table
for row in cursor.execute(”SELECT * FROM cats”):

print(row)

Read all rows into pandas DataFrame
pd.read_sql_query(“SELECT * FROM cats”, conn, index_col=”id”)

id name
1 Megabyte
3 Fuzz Aldrin

JOINING DATA
A join operation merges two or more tables into a single
relation. Different ways of doing this:
• Inner
• Left
• Right
• Full Outer

Join operations are done on columns that explicitly link the
tables together

33

INNER JOINS

Inner join returns merged rows that share the same value in
the column they are being joined on (id and cat_id).

34

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017

cats

visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017

INNER JOINS

35

Inner join in pandas
df_cats = pd.read_sql_query(“SELECT * from cats”, conn)
df_visits = pd.read_sql_query(“SELECT * from visits”, conn)
df_cats.merge(df_visits, how = “inner”,

left_on = “id”, right_on = ”cat_id”)

Inner join in SQL / SQLite via Python
cursor.execute(“””

SELECT
*

FROM
cats, visits

WHERE
cats.id == visits.cat_id

”””)

LEFT JOINS
Inner joins are the most common type of joins (get results
that appear in both tables)
Left joins: all the results from the left table, only some
matching results from the right table
Left join (cats, visits) on (id, cat_id) ???????????

36

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL

RIGHT JOINS
Take a guess!
Right join

(cats, visits)
on

(id, cat_id)
???????????

37

id name
1 Megabyte
2 Meowly Cyrus
3 Fuzz Aldrin
4 Chairman Meow
5 Anderson Pooper
6 Gigabyte

cat_id last_visit
1 02-16-2017
2 02-14-2017
5 02-03-2017
7 02-19-2017
12 02-21-2017

cats
visits

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
5 Anderson Pooper 02-03-2017
7 NULL 02-19-2017
12 NULL 02-21-2017

LEFT/RIGHT JOINS

38

Left join in pandas
df_cats.merge(df_visits, how = “left”,

left_on = “id”, right_on = ”cat_id”)

Right join in pandas
df_cats.merge(df_visits, how = “right”,

left_on = “id”, right_on = ”cat_id”)

Left join in SQL / SQLite via Python
cursor.execute(“SELECT * FROM cats LEFT JOIN visits ON

cats.id == visits.cat_id”)

Right join in SQL / SQLite via Python
L

FULL OUTER JOIN
Combines the left and the right join ???????????

39

id name last_visit
1 Megabyte 02-16-2017
2 Meowly Cyrus 02-14-2017
3 Fuzz Aldrin NULL
4 Chairman Meow NULL
5 Anderson Pooper 02-03-2017
6 Gigabyte NULL
7 NULL 02-19-2017
12 NULL 02-21-2017

Outer join in pandas
df_cats.merge(df_visits, how = “outer”,

left_on = “id”, right_on = ”cat_id”)

GOOGLE IMAGE SEARCH ONE
SLIDE SQL JOIN VISUAL

40

Image credit: http://www.dofactory.com/sql/join

RAW SQL IN PANDAS
If you “think in SQL” already, you’ll be fine with pandas:
• conda install -c anaconda pandasql

• Info: http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

41

Write the query text
q = ”””

SELECT
*

FROM
cats

LIMIT 10;”””

Store in a DataFrame
df = sqldf(q, locals())

NEXT CLASS:
EXPLORATORY ANALYSIS

42

