Hypothesis Testing II 210/10/1977?

Waldo Stats. Is this a normal distribution?

Standard deviations and probability of the population mean

The process of testing hypothesis

- 1. Examine null hypothesis
- 2. If suspicious, try to disprove it (where's the confidence numbers)
- 3. Decide how to sample randomly
- 4. Figure out how many N to sample?
- 5. Calculate mean
- 6. Calculate standard deviation
- 7. Calculate Z score (how many deviations away are you)
- 8. Reject or accept based on probability usually >=95%, definitely if over 99.7%

How many N to sample?

More is better

- 1. Cost + time a factor
- 2. As N increases the standard deviation decreases
- 3. Confidence interval decreases, +- error

Z-Values A z-value gives you p-value (probability of getting this value) This is a cumulative from the mean so multiply your Z*2 to get a total probability. E.g., z=2 → p = .47*2 = 95%

z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1.0	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41308	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.6	0.44520	0.44630	0.44738	0.44845	0.44950	0.45053	0.45154	0.45254	0.45352	0.45449
1.7	0.45543	0.45637	0.45728	0.45818	0.45907	0.45994	0.46080	0.46164	0.46246	0.46327
1.8	0.46407	0.46485	0.46562	0.46638	0.46712	0.46784	0.46856	0.46926	0.46995	0.47062
1.9	0.47128	0.47193	0.47257	0.47320	0.47381	0.47441	0.47500	0.47558	0.47615	0.47670
2.0	0.47725	0.47778	0.47831	0.47882	0.47932	0.47982	0.48030	0.48077	0.48124	0.48169
2.1	0.48214	0.48257	0.48300	0.48341	0.48382	0.48422	0.48461	0.48500	0.48537	0.48574
2.2	0.48610	0.48645	0.48679	0.48713	0.48745	0.48778	0.48809	0.48840	0.48870	0.48899
2.3	0.48928	0.48956	0.48983	0.49010	0.49036	0.49061	0.49086	0.49111	0.49134	0.49158
2.4	0.49180	0.49202	0.49224	0.49245	0.49266	0.49286	0.49305	0.49324	0.49343	0.49361
2.5	0.49379	0.49396	0.49413	0.49430	0.49446	0.49461	0.49477	0.49492	0.49506	0.49520
2.6	0.49534	0.49547	0.49560	0.49573	0.49585	0.49598	0.49609	0.49621	0.49632	0.49643
2.7	0.49653	0.49664	0.49674	0.49683	0.49693	0.49702	0.49711	0.49720	0.49728	0.49736
2.8	0.49744	0.49752	0.49760	0.49767	0.49774	0.49781	0.49788	0.49795	0.49801	0.49807
2.9	0.49813	0.49819	0.49825	0.49831	0.49836	0.49841	0.49846	0.49851	0.49856	0.49861
3.0	0.49865	0.49869	0.49874	0.49878	0.49882	0.49886	0.49889	0.49893	0.49896	0.49900
3.1	0.49903	0.49906	0.49910	0.49913	0.49916	0.49918	0.49921	0.49924	0.49926	0.49929
3.2	0.49931	0.49934	0.49936	0.49938	0.49940	0.49942	0.49944	0.49946	0.49948	0.49950
3.3	0.49952	0.49953	0.49955	0.49957	0.49958	0.49960	0.49961	0.49962	0.49964	0.49965
3.4	0.49966	0.49968	0.49969	0.49970	0.49971	0.49972	0.49973	0.49974	0.49975	0.49976
3.5	0.49977	0.49978	0.49978	0.49979	0.49980	0.49981	0.49981	0.49982	0.49983	0.49983
3.6	0.49984	0.49985	0.49985	0.49986	0.49986	0.49987	0.49987	0.49988	0.49988	0.49989
3.7	0.49989	0.49990	0.49990	0.49990	0.49991	0.49991	0.49992	0.49992	0.49992	0.49992
3.8	0.49993	0.49993	0.49993	0.49994	0.49994	0.49994	0.49994	0.49995	0.49995	0.49995
3.9	0.49995	0.49995	0.49996	0.49996	0.49996	0.49996	0.49996	0.49996	0.49997	0.49997
4.0	0.40007	0.40007	0.40007	0.40007	0.40007	0.40007	0.40000	0.40009	0.40000	0 40000

01 0.0005
02 0.001
636.62
327 31.599
173 8 610
893 6.869
208 5.959
785 5.408
501 5.041
297 4.781
144 4.567 025 4.437
930 4.318
852 4.221
787 4.140
733 4.073
686 4.015
040 3.905 S10 3.922
579 3.883
552 3.850
527 3.819
505 3.792
485 3.768
467 3.745
450 3.725
421 3.690
408 3.674
396 3.659
385 3.646
307 3.551
232 3.460
174 3.390
098 3.300
090 3.291
3% 99.9%

S

Any statistic has an error +- (we're speculating)

We call this the margin of error

For the mean we have:

Mean +-Z*(Standard Deviation/sqrt(N))

E.g., for the Query analysis we did we have

Mean = 4, Z=-3.40, S=1.76, so we have

4 +- 1.09 @99.97%. So we can say we are 999.7% confident that population mean is 4 +- 1.09 or we are 999.7% confident that the population mean is within the confidence interval 2.91 and 5.09

Margin of Error continued

$$\overline{X} \pm Z \frac{s}{\sqrt{n}}$$

We could have chosen a 95% margin of error also and by doing so our confidence interval would have decreased. E.g.,

Mean = 4, Z=2, S=1.76, so we have

4 +- .64 @95%. So we can say we are 95% confident that population mean is 4 +- .64 or we are 95% confident that the population mean is within the confidence interval 3.36 and 4.64. This is how you should present your findings. Statistic, N, Standard Deviation and confidence numbers.

Type I & Type II errors

				Probability	Probability
Null Hypothesis True	Did we reject	Example	Outcome	we're right	wrong
t	t	They say 10 minutes is the best, we say 4 but in fact they're correct (maybe we needed more N)	Type 1 error	99.970%	0.030%
t	f	They say 10 minutes is the best, we say 9 but 9 is within 95% so the null hypothesis holds.	Great, should have accepted it	94.900%	5.100%
		They say 10 minutes is the best, we say 9 but 9 is within 95% so the null hypothesis holds. We are			
f	f	both wrong proven with higher N or another study is conducted and finds we sampled poorly	Type 2 error	94.900%	5.100%
f	t	They say 10 minutes is the best, we say 4 and we're correct (we increased N later on and verified)	Great, should have rejected it	99.970%	0.030%

Some examples

- The average time it takes to find Waldo at Comic Con by a random group of people over age 6 is 7 minutes. We surveyed 30 random people over age six and they found Waldo in an average time of 5 minutes. Who is right?
- Null hypo = mean = 7
- New hypo = mean = 5. N = 30, calculated sdev = 2.08, Z-Score = -.96
- Z-table look up gives = .33*2 → p = 66%. So there's a 66% chance that the population mean is in this range. Margin of error = 5+-.36 66% confidence. Should we reject?

Time permitting in class examples with Waldo

