
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

PREM SAGGAR

Lecture #14 – 10/15/2018

CMSC320
Mondays & Wednesdays
2:00pm – 3:15pm

ANNOUNCEMENTS

2

Mini-Project #2 is due this week!
• It is linked to from ELMS; also available at:

https://github.com/umddb/cmsc320-fall2018/tree/master/project2

• Deliverable is a .ipynb file submitted to ELMS

• Due Friday, October 19th

ANNOUNCEMENTS
Midterm is next week!
• Wednesday, October 24th

• During class, 75 minutes
I will post an old midterm on Piazza today
• Note that the order in which certain topics are covered has

changed, so some of the questions may not make sense yet!
I will do a midterm review in class next Monday.

You are allowed one 8½ x 11” sheet of paper, single side,
handwritten note sheet
• Must be written by you, not copied from somebody else
• It will be turned in at the end of class

3

AND NOW!
Graph Processing

• Representing graphs

• Centrality measures

• Community detection

Natural Language Processing

• Bag of Words, TF-IDF, N-grams

• (If we get to this today …)

Thank you to: Sukumar Ghosh (Iowa), Lei Tang (Yahoo!),
Huan Liu (ASU), Zico Kolter (CMU)

4

NETWORKS? GRAPHS?
Networks are systems of interrelated objects
Graphs are the mathematical models used to represent
networks
In data science, we will use algorithms on graphs to answer
questions about real-world networks.

5

Trump Obama

GRAPHS
A graph G = (V,E) is a set of vertices V and edges E
Edges can be undirected or directed

6

C

B D

A

V = {A, B, C, D}
E = {(A,B), (B,C), (C,D), (A,C)}

C

B D

A

V = {A, B, C, D}
E = {(A,C), (C,A), (B,C), (B,D)}

Examples of directed vs undirected graphs ????????????

Nodes = Vertices
Edges = Arcs

GRAPHS
Edges can be unweighted or weighted
• Unweighted à all edges have unit weight

7

C

B D

A C

B D

A

Unweighted Weighted

1

2
44

Examples of unweighted and weighted graphs ????????????

GRAPHS AND THE NETWORKS
THEY REPRESENT

8

http://thepoliticsofsystems.net/category/network-theory/

Facebook posts (in
black), and users liking
or commenting on
those posts

GRAPHS AND THE NETWORKS
THEY REPRESENT

9

GRAPHS AND THE NETWORKS
THEY REPRESENT

10

UNOS, 2010-12-08

UNOS, 2012-09-10

UNOS, 2014-06-30

NETWORKX
NetworkX is a Python library for storing, manipulating, and
analyzing (small- and medium-sized) graphs
• Uses Matplotlib for rendering

• https://networkx.github.io/

• conda install -c anaconda networkx

11

import networkx as nx

G=nx.Graph()
G.add_node("spam”)
G.add_edge(1,2)

print(list(G.nodes()))
print(list(G.edges())) [(1, 2)

[1, 2, ‘spam’]
[(1,2)]

https://networkx.github.io/

STORING A GRAPH
Three main ways to represent a graph in memory:
• Adjacency lists
• Adjacency dictionaries
• Adjacency matrix

The storage decision should be made based on the expected
use case of your graph:
• Static analysis only?
• Frequent updates to the structure?
• Frequent updates to semantic information?

12

ADJACENCY LISTS
For each vertex, store an array of the vertices it connects to

Pros: ????????
• Iterate over all outgoing edges; easy to add an edge

Cons: ????????
• Checking for the existence of an edge is O(|V|), deleting is hard 13

C

B D

A
Vertex Neighbors
A [C]
B [C, D]
C [A]
D []

ADJACENCY DICTIONARIES
For each vertex, store a dictionary of vertices it connects to

Pros: ?????????
• O(1) to add, remove, query edges
Cons: ?????????
• Overhead (memory, caching, etc)

14

C

B D

A
Vertex Neighbors
A {C: 1.0}
B {C: 1.0, D: 1.0}
C {A: 1.0}
D {}

ADJACENCY MATRIX
Store the connectivity of the graph in a matrix

Cons: ?????????
• O(|V|2) space regardless of the number of edges
Almost always stored as a sparse matrix

15

C

B D

A
A B C D

A 0 0 1 0

B 0 0 0 0

C 1 1 0 0

D 0 1 0 0

From

To

NETWORKX STORAGE
NetworkX uses an adjacency dictionary representation
• Built-ins for reading from/to SciPy/NumPy matrices

16

Make a directed 3-cycle
G=nx.DiGraph()
G.add_edges_from([(‘A’,’B’), (‘B’, ‘C’), (‘C’, ‘A’)])

Get all out-edges of vertex ’B’
print(G[‘B’])

Loop over vertices
for v in G.nodes(): print(v)

Loop over edges
for u,v in G.edges(): print(u, v)

ASIDE: GRAPH DATABASES
Traditional relational databases store relations between
entities directly in the data (e.g., foreign keys)
• Queries search data, JOIN over relations

Graph databases directly relate data in the storage system
using edges (relations) with attached semantic properties

17Image thanks to Wikipedia

EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends.
Both John and Sally have read the book, Graph
Databases.

18Thanks to: http://neo4j.com

Nodes ??????????
• John
• Sally
• Graph Databases

EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends.
Both John and Sally have read the book, Graph
Databases.

19

Labels ??????????
• Person
• Book

A named construct that
groups nodes into sets

Next: assign labels to the nodes

EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends.
Both John and Sally have read the book, Graph
Databases.

Relationships ????????
• John is a friend of Sally; Sally is a friend of John

• John has read Graph Databases; Sally has read Graph
Databases

20

EXAMPLE GRAPH DATABASE
Can associate attributes with entities in a key-value way
• Attributes on nodes, relations, labels

21

EXAMPLE GRAPH DATABASE
Querying graph databases needs a language other than SQL
Recall: graph databases explicitly represent relationships
• Adhere more to an object-oriented paradigm

• May be more suitable for managing ad-hoc data

• May scale better, depending on the query types (no JOINs)

22

When did Sally and John become friends?
MATCH (sally:Person { name: 'Sally' })
MATCH (john:Person { name: 'John' })
MATCH (sally)-[r:FRIEND_OF]-(john)
RETURN r.since AS friends_since

Cypher query

BULBFLOW
Many graph databases out there:
• List found here: https://en.wikipedia.org/wiki/Graph_database

neo4j and Titan are popular, easy-to-use solutions
• https://neo4j.com/

• http://titan.thinkaurelius.com/
Bulbflow is a Python framework that connects to several
backing graph-database servers like neo4j
• http://bulbflow.com/

• https://github.com/espeed/bulbs

23

https://en.wikipedia.org/wiki/Graph_database
https://neo4j.com/
http://titan.thinkaurelius.com/
http://bulbflow.com/
https://github.com/espeed/bulbs

24

THE VALUE OF A
VERTEX

IMPORTANCE OF VERTICES
Not all vertices are equally important
Centrality Analysis:
• Find out the most important node(s) in one network

• Used as a feature in classification, for visualization, etc …

Commonly-used Measures
• Degree Centrality

• Closeness Centrality

• Betweenness Centrality

• Eigenvector Centrality

25

DEGREE CENTRALITY
The importance of a vertex is determined by the number of
vertices adjacent to it
• The larger the degree, the more important the vertex is

• Only a small number of vertex have high degrees in many real-
life networks

Degree Centrality:

Normalized Degree Centrality:

26

For vertex 1, degree centrality is 3;
Normalized degree centrality is

3/(9-1)=3/8.

CLOSENESS CENTRALITY
“Central” vertices are important, as they can reach the whole
network more quickly than non-central vertices
Importance measured by how close a vertex is to other vertices

Average Distance:

Closeness Centrality:

27

CLOSENESS CENTRALITY

28Vertex 4 is more central than vertex 3

BETWEENNESS CENTRALITY
Vertex betweenness counts the number of shortest paths
that pass through one vertex
Vertices with high betweenness are important in
communication and information diffusion

Betweenness Centrality:

29

The number of shortest paths between s and t�st :

�st(vi) : The number of shortest paths between s and t that pass vi

BETWEENNESS CENTRALITY

30

The number of shortest paths between s and t�st :
�st(vi) : The number of shortest paths between s and t that pass vi

What is the betweenness centrality for node 4 ?????????

EIGENVECTOR CENTRALITY
A vertex’s importance is determined by the importance of the
friends of that vertex
If one has many important friends, he should be important as
well.

The centrality corresponds to the top eigenvector of the
adjacency matrix A.
A variant of this eigenvector centrality is the PageRank score.

31

NETWORKX:
CENTRALITY
Many other centrality measures implemented for you!
• https://networkx.github.io/documentation/development/referenc

e/algorithms.centrality.html

Degree, in-degree, out-degree
Closeness
Betweenness
• Applied to both edges and vertices; hard to compute

Load: similar to betweenness
Eigenvector, Katz (provides additional weight to close
neighbors)

32

https://networkx.github.io/documentation/development/reference/algorithms.centrality.html

STRENGTH OF
RELATIONSHIPS

33

WEAK AND STRONG TIES
In practice, connections are not of the same strength
Interpersonal social networks are composed of strong ties
(close friends) and weak ties (acquaintances).
Strong ties and weak ties play different roles for community
formation and information diffusion
Strength of Weak Ties [Granovetter 1973]

• Occasional encounters with distant acquaintances can provide
important information about new opportunities for job search

34

CONNECTIONS IN SOCIAL
MEDIA
Social media allows users to connect to each other more
easily than ever.
• One user might have thousands of friends online
• Who are the most important ones among your 300 Facebook
friends?

Imperative to estimate the strengths of ties for advanced
analysis
• Analyze network topology
• Learn from User Profiles and Attributes
• Learn from User Activities

35

LEARNING FROM
NETWORK TOPOLOGY
Bridges connecting two different communities are weak ties
An edge is a bridge if its removal results in disconnection of
its terminal vertices

36

Bridge edge(s) ?????

Bridge edge(s) ?????

“SHORTCUT” BRIDGE
Bridges are rare in real-life networks
Idea: relax the definition by checking if the distance between
two terminal vertices increases if the edge is removed
• The larger the distance, the weaker the tie is

Example:
• d(2,5) = 4 if (2,5) is removed

• d(5,6) = 2 if (5,6) is removed

• (5,6) is a stronger tie than (2,5)

37

NEIGHBORHOOD OVERLAP
Tie strength can be measured based on neighborhood
overlap; the larger the overlap, the stronger the tie is.

(-2 in the denominator is to exclude vi and vj)

Example:

38

LEARNING FROM PROFILES
AND INTERACTIONS
Twitter: one can follow others without followee’s confirmation
• The real friendship network is determined by the frequency two users talk

to each other, rather than the follower-followee network

• The real friendship network is more influential in driving Twitter usage
Strengths of ties can be predicted accurately based on various
information from Facebook
• Friend-initiated posts, message exchanged in wall post, number of mutual

friends, etc.

Learning numeric link strength by maximum likelihood estimation
• User profile similarity determines the strength

• Link strength in turn determines user interaction
• Maximize the likelihood based on observed profiles and interactions

39

COMMUNITY
DETECTION

A co-authorship network of physicists and mathematicians
(Courtesy: Easley & Kleinberg) 40

WHAT IS A COMMUNITY?
Informally: “tightly-knit region” of the network.
• How do we identify this region?
• How do we separate tightly-knit regions from each other?
It depends on the definition of tightly knit.
• Regions can be nested
• Examples ?????????

• How do bridges fit into this ?????????

41

WHAT IS A COMMUNITY?

(Courtesy: Easley & Kleinberg)
An example of a nested structure of the communities

bridges

Removal of a bridge
separates the graph
into disjoint
components

42

COMMUNITY DETECTION
Girvan-Newman Method
• Remove the edges of highest betweenness first.

• Repeat the same step with the remainder graph.

• Continue this until the graph breaks down into individual
nodes.

As the graph breaks down into pieces, the tightly knit
community structure is exposed.
Results in a hierarchical partitioning of the graph

43

GIRVAN-NEWMAN
METHOD

Betweenness(7-8)= 7*7 = 49

Betweenness(3-7) = Betweenness(6-7) =
Betweenness(8-9) = Betweenness(8-12) = 3*11= 33

Betweenness(1-3) = 1*12 = 12

44

GIRVAN-NEWMAN
METHOD

Betweenness(3-7) = Betweenness(6-7) =
Betweenness(8-9) = Betweenness(8-12) = 3*4 = 12

Betweenness(1-3) = 1*5=5

45

GIRVAN-NEWMAN
METHOD

???????????????????
Betweenness of every edge = 1

46

GIRVAN-NEWMAN
METHOD

47

G=nx.Graph()

Returns an iterator over partitions at
different hierarchy levels
nx.girvan_newman(G)

NETWORKX: VIZ
Can render via Matplotlib or GraphViz

Many different layout engines, aesthetic options, etc
• https://networkx.github.io/documentation/networkx-
1.10/reference/drawing.html

• https://networkx.github.io/documentation/development/gallery.h
tml

48

import matplotlib.pyplot as plt

G=nx.Graph()
nx.draw(G, with_labels=True)

Save to a PDF
plt.savefig(“my_filename.pdf”)

https://networkx.github.io/documentation/networkx-1.10/reference/drawing.html
https://networkx.github.io/documentation/development/gallery.html

NETWORKX: VIZ

49

Cycle with 24 vertices
G=nx.cycle_graph(24)

Compute force-based layout
pos=nx.spring_layout(G,

iterations=200)

Draw the graph
nx.draw(G,pos,

node_color=range(24),
node_size=800,
cmap=plt.cm.Blues)

Save as PNG, then display
plt.savefig(”graph.png")
plt.show()

NETWORKX: VIZ

50

Branch factor 3, depth 5
G = nx.balanced_tree(3, 5)

Circular layout
pos = graphviz_layout(G,

prog='twopi', args='')

Draw 8x8 figure
plt.figure(figsize=(8, 8))
nx.draw(G, pos,

node_size=20,
alpha=0.5,
node_color="blue",
with_labels=False)

plt.axis('equal')
plt.show()

