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ANNOUNCEMENTS
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Mini-Project #2 is due this week!
• It is linked to from ELMS; also available at: 

https://github.com/umddb/cmsc320-fall2018/tree/master/project2

• Deliverable is a .ipynb file submitted to ELMS

• Due Friday, October 19th



ANNOUNCEMENTS
Midterm is next week!
• Wednesday, October 24th

• During class, 75 minutes
I will post an old midterm on Piazza today
• Note that the order in which certain topics are covered has 

changed, so some of the questions may not make sense yet!
I will do a midterm review in class next Monday.

You are allowed one 8½ x 11” sheet of paper, single side, 
handwritten note sheet
• Must be written by you, not copied from somebody else
• It will be turned in at the end of class 

3



AND NOW!
Graph Processing

• Representing graphs

• Centrality measures

• Community detection

Natural Language Processing

• Bag of Words, TF-IDF, N-grams

• (If we get to this today …)

Thank you to: Sukumar Ghosh (Iowa), Lei Tang (Yahoo!), 
Huan Liu (ASU), Zico Kolter (CMU)
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NETWORKS? GRAPHS?
Networks are systems of interrelated objects
Graphs are the mathematical models used to represent 
networks
In data science, we will use algorithms on graphs to answer 
questions about real-world networks.
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Trump Obama



GRAPHS
A graph G = (V,E) is a set of vertices V and edges E
Edges can be undirected or directed
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V = {A, B, C, D}
E = {(A,B), (B,C), (C,D), (A,C)}

C

B D

A

V = {A, B, C, D}
E = {(A,C), (C,A), (B,C), (B,D)}

Examples of directed vs undirected graphs ????????????

Nodes = Vertices
Edges = Arcs 



GRAPHS
Edges can be unweighted or weighted
• Unweighted à all edges have unit weight
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Unweighted Weighted

1

2
44

Examples of unweighted and weighted graphs ????????????



GRAPHS AND THE NETWORKS 
THEY REPRESENT
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http://thepoliticsofsystems.net/category/network-theory/

Facebook posts (in 
black), and users liking 
or commenting on 
those posts



GRAPHS AND THE NETWORKS 
THEY REPRESENT
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GRAPHS AND THE NETWORKS 
THEY REPRESENT
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UNOS, 2010-12-08

UNOS, 2012-09-10

UNOS, 2014-06-30



NETWORKX
NetworkX is a Python library for storing, manipulating, and 
analyzing (small- and medium-sized) graphs
• Uses Matplotlib for rendering

• https://networkx.github.io/

• conda install -c anaconda networkx
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import networkx as nx

G=nx.Graph()
G.add_node("spam”)
G.add_edge(1,2)

print(list(G.nodes()))
print(list(G.edges())) [(1, 2)

[1, 2, ‘spam’]
[(1,2)]

https://networkx.github.io/


STORING A GRAPH
Three main ways to represent a graph in memory:
• Adjacency lists
• Adjacency dictionaries
• Adjacency matrix

The storage decision should be made based on the expected 
use case of your graph:
• Static analysis only?
• Frequent updates to the structure?
• Frequent updates to semantic information?
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ADJACENCY LISTS
For each vertex, store an array of the vertices it connects to

Pros:  ????????
• Iterate over all outgoing edges; easy to add an edge

Cons:  ????????
• Checking for the existence of an edge is O(|V|), deleting is hard 13
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B D

A
Vertex Neighbors
A [C]
B [C, D]
C [A]
D []



ADJACENCY DICTIONARIES
For each vertex, store a dictionary of vertices it connects to

Pros:  ?????????
• O(1) to add, remove, query edges 
Cons:  ?????????
• Overhead (memory, caching, etc)
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A
Vertex Neighbors
A {C: 1.0}
B {C: 1.0, D: 1.0}
C {A: 1.0}
D {}



ADJACENCY MATRIX
Store the connectivity of the graph in a matrix

Cons:  ?????????
• O(|V|2) space regardless of the number of edges
Almost always stored as a sparse matrix
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A
A B C D

A 0 0 1 0

B 0 0 0 0

C 1 1 0 0

D 0 1 0 0

From

To



NETWORKX STORAGE
NetworkX uses an adjacency dictionary representation
• Built-ins for reading from/to SciPy/NumPy matrices
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# Make a directed 3-cycle
G=nx.DiGraph()
G.add_edges_from([(‘A’,’B’), (‘B’, ‘C’), (‘C’, ‘A’)])

# Get all out-edges of vertex ’B’
print(G[‘B’])

# Loop over vertices
for v in G.nodes(): print(v)

# Loop over edges
for u,v in G.edges(): print(u, v)



ASIDE: GRAPH DATABASES
Traditional relational databases store relations between 
entities directly in the data (e.g., foreign keys)
• Queries search data, JOIN over relations

Graph databases directly relate data in the storage system 
using edges (relations) with attached semantic properties

17Image thanks to Wikipedia



EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends. 
Both John and Sally have read the book, Graph 
Databases.

18Thanks to: http://neo4j.com

Nodes ??????????
• John
• Sally
• Graph Databases



EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends. 
Both John and Sally have read the book, Graph 
Databases.
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Labels ??????????
• Person
• Book

A named construct that 
groups nodes into sets

Next: assign labels to the nodes



EXAMPLE GRAPH DATABASE
Two people, John and Sally, are friends. 
Both John and Sally have read the book, Graph 
Databases.

Relationships ????????
• John is a friend of Sally; Sally is a friend of John

• John has read Graph Databases; Sally has read Graph 
Databases
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EXAMPLE GRAPH DATABASE
Can associate attributes with entities in a key-value way
• Attributes on nodes, relations, labels
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EXAMPLE GRAPH DATABASE
Querying graph databases needs a language other than SQL
Recall: graph databases explicitly represent relationships
• Adhere more to an object-oriented paradigm

• May be more suitable for managing ad-hoc data

• May scale better, depending on the query types (no JOINs)

22

# When did Sally and John become friends?
MATCH (sally:Person { name: 'Sally' })
MATCH (john:Person { name: 'John' })
MATCH (sally)-[r:FRIEND_OF]-(john)
RETURN r.since AS friends_since

Cypher query



BULBFLOW
Many graph databases out there:
• List found here: https://en.wikipedia.org/wiki/Graph_database

neo4j and Titan are popular, easy-to-use solutions
• https://neo4j.com/

• http://titan.thinkaurelius.com/
Bulbflow is a Python framework that connects to several 
backing graph-database servers like neo4j
• http://bulbflow.com/

• https://github.com/espeed/bulbs
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https://en.wikipedia.org/wiki/Graph_database
https://neo4j.com/
http://titan.thinkaurelius.com/
http://bulbflow.com/
https://github.com/espeed/bulbs
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THE VALUE OF A 
VERTEX



IMPORTANCE OF VERTICES
Not all vertices are equally important
Centrality Analysis: 
• Find out the most important node(s) in one network

• Used as a feature in classification, for visualization, etc …

Commonly-used Measures
• Degree Centrality

• Closeness Centrality

• Betweenness Centrality

• Eigenvector Centrality
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DEGREE CENTRALITY
The importance of a vertex is determined by the number of 
vertices adjacent to it
• The larger the degree, the more important the vertex is

• Only a small number of vertex have high degrees in many real-
life networks

Degree Centrality:

Normalized Degree Centrality:  

26

For vertex 1, degree centrality is 3;
Normalized degree centrality is 

3/(9-1)=3/8.



CLOSENESS CENTRALITY
“Central” vertices are important, as they can reach the whole 
network more quickly than non-central vertices
Importance measured by how close a vertex is to other vertices

Average Distance:

Closeness Centrality: 
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CLOSENESS CENTRALITY

28Vertex 4 is more central than vertex 3



BETWEENNESS CENTRALITY
Vertex betweenness counts the number of shortest paths 
that pass through one vertex
Vertices with high betweenness are important in 
communication and information diffusion

Betweenness Centrality:

29

The number of shortest paths between s and t�st :

�st(vi) : The number of shortest paths between s and t that pass vi



BETWEENNESS CENTRALITY
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The number of shortest paths between s and t�st :
�st(vi) : The number of shortest paths between s and t that pass vi

What is the betweenness centrality for node 4 ?????????



EIGENVECTOR CENTRALITY
A vertex’s importance is determined by the importance of the 
friends of that vertex
If one has many important friends, he should be important as 
well. 

The centrality corresponds to the top eigenvector of the 
adjacency matrix A. 
A variant of this eigenvector centrality is the PageRank score.
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NETWORKX: 
CENTRALITY
Many other centrality measures implemented for you!
• https://networkx.github.io/documentation/development/referenc

e/algorithms.centrality.html

Degree, in-degree, out-degree
Closeness
Betweenness
• Applied to both edges and vertices; hard to compute

Load: similar to betweenness
Eigenvector, Katz (provides additional weight to close 
neighbors)
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https://networkx.github.io/documentation/development/reference/algorithms.centrality.html


STRENGTH OF 
RELATIONSHIPS
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WEAK AND STRONG TIES
In practice, connections are not of the same strength
Interpersonal social networks are composed of strong ties 
(close friends) and weak ties (acquaintances).
Strong ties and weak ties play different roles for community 
formation and information diffusion
Strength of Weak Ties [Granovetter 1973]

• Occasional encounters with distant acquaintances can provide 
important information about new opportunities for job search
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CONNECTIONS IN SOCIAL 
MEDIA
Social media allows users to connect to each other more 
easily than ever.
• One user might have thousands of friends online
• Who are the most important ones among your 300 Facebook 
friends?

Imperative to estimate the strengths of ties for advanced 
analysis  
• Analyze network topology
• Learn from User Profiles and Attributes
• Learn from User Activities
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LEARNING FROM 
NETWORK TOPOLOGY
Bridges connecting two different communities are weak ties
An edge is a bridge if its removal results in disconnection of 
its terminal vertices

36

Bridge edge(s) ?????

Bridge edge(s) ?????



“SHORTCUT” BRIDGE
Bridges are rare in real-life networks
Idea: relax the definition by checking if the distance between 
two terminal vertices increases if the edge is removed
• The larger the distance, the weaker the tie is

Example:
• d(2,5) = 4 if (2,5) is removed

• d(5,6) = 2 if (5,6) is removed

• (5,6) is a stronger tie than (2,5)
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NEIGHBORHOOD OVERLAP
Tie strength can be measured based on neighborhood 
overlap; the larger the overlap, the stronger the tie is.

(-2 in the denominator is to exclude vi and vj)

Example:

38



LEARNING FROM PROFILES 
AND INTERACTIONS
Twitter: one can follow others without followee’s confirmation
• The real friendship network is determined by the frequency two users talk 

to each other, rather than the follower-followee network

• The real friendship network is more influential in driving Twitter usage
Strengths of ties can be predicted accurately based on various 
information from Facebook
• Friend-initiated posts, message exchanged in wall post, number of mutual 

friends, etc. 

Learning numeric link strength by maximum likelihood estimation
• User profile similarity determines the strength

• Link strength in turn determines user interaction
• Maximize the likelihood based on observed profiles and interactions

39



COMMUNITY 
DETECTION

A co-authorship network of physicists and mathematicians
(Courtesy: Easley & Kleinberg) 40



WHAT IS A COMMUNITY?
Informally: “tightly-knit region” of the network.
• How do we identify this region?
• How do we separate tightly-knit regions from each other?
It depends on the definition of tightly knit.
• Regions can be nested
• Examples ?????????

• How do bridges fit into this ?????????
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WHAT IS A COMMUNITY?

(Courtesy: Easley & Kleinberg) 
An example of a nested structure of the communities

bridges

Removal of a bridge 
separates the graph 
into disjoint 
components
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COMMUNITY DETECTION
Girvan-Newman Method
• Remove the edges of highest betweenness first. 

• Repeat the same step with the remainder graph. 

• Continue this until the graph breaks down into individual 
nodes.

As the graph breaks down into pieces, the tightly knit 
community structure is exposed.
Results in a hierarchical partitioning of the graph

43



GIRVAN-NEWMAN 
METHOD

Betweenness(7-8)= 7*7 = 49

Betweenness(3-7) = Betweenness(6-7) =
Betweenness(8-9) = Betweenness(8-12) = 3*11= 33

Betweenness(1-3) = 1*12 = 12
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GIRVAN-NEWMAN 
METHOD

Betweenness(3-7) = Betweenness(6-7) = 
Betweenness(8-9) = Betweenness(8-12) = 3*4 = 12

Betweenness(1-3) = 1*5=5
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GIRVAN-NEWMAN 
METHOD

???????????????????
Betweenness of every edge = 1
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GIRVAN-NEWMAN 
METHOD
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G=nx.Graph()

# Returns an iterator over partitions at 
# different hierarchy levels
nx.girvan_newman(G)



NETWORKX: VIZ
Can render via Matplotlib or GraphViz

Many different layout engines, aesthetic options, etc
• https://networkx.github.io/documentation/networkx-
1.10/reference/drawing.html

• https://networkx.github.io/documentation/development/gallery.h
tml
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import matplotlib.pyplot as plt

G=nx.Graph()
nx.draw(G, with_labels=True)

# Save to a PDF
plt.savefig(“my_filename.pdf”)

https://networkx.github.io/documentation/networkx-1.10/reference/drawing.html
https://networkx.github.io/documentation/development/gallery.html


NETWORKX: VIZ
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# Cycle with 24 vertices
G=nx.cycle_graph(24) 

# Compute force-based layout
pos=nx.spring_layout(G,

iterations=200)

# Draw the graph 
nx.draw(G,pos,

node_color=range(24),
node_size=800,
cmap=plt.cm.Blues) 

# Save as PNG, then display
plt.savefig(”graph.png")
plt.show()



NETWORKX: VIZ
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# Branch factor 3, depth 5
G = nx.balanced_tree(3, 5) 

# Circular layout
pos = graphviz_layout(G,

prog='twopi', args='') 

# Draw 8x8 figure 
plt.figure(figsize=(8, 8)) 
nx.draw(G, pos,

node_size=20,
alpha=0.5,
node_color="blue",
with_labels=False) 

plt.axis('equal') 
plt.show()


