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ANNOUNCEMENTS
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Mini-Project #2 grades will be out by Thursday night!
Mini-Project #3 is out!
• It is linked to from ELMS; it is also be available at: 

https://github.com/umddb/cmsc641-fall2018/tree/master/project3

• Deliverable is a .ipynb file submitted to ELMS

• Due November 19th

Please label your ipynb file something like 
<lastname>_<firstname>_project3.ipynb



MIDTERMS
Not graded yet!
If you still need to take a midterm exam, please please please 
please please tell me.  I know of exactly four of you who do.
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THIS LECTURE:
Words words words!
• Free text and natural language processing in data science

• Bag of words and TF-IDF

• N-Grams and language models

• Sentiment mining
Thanks to: Zico Kolter (CMU) & Marine Carpuat’s 723 (UMD)
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PRECURSOR TO NATURAL 
LANGUAGE PROCESSING
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For we can easily understand a machine's being 
constituted so that it can utter words, and even emit 
some responses to action on it of a corporeal kind, 

which brings about a change in its organs; for 
instance, if touched in a particular part it may ask what 

we wish to say to it; if in another part it may exclaim
that it is being hurt, and so on.

-- René Descartes, 1600s  

(But it never happens that it arranges its speech in 
various ways, in order to reply appropriately to 

everything that may be said in its presence, as even 
the lowest type of man can do.)



PRECURSOR TO NATURAL 
LANGUAGE PROCESSING
Turing’s Imitation Game [1950]:
• Person A and Person B go into separate rooms

• Guests send questions in, read questions that come out – but 
they are not told who sent the answers

• Person A (B) wants to convince group that she is Person B (A)
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We now ask the question, "What will happen when a 
machine takes the part of [Person] A in this game?" 

Will the interrogator decide wrongly as often when the 
game is played like this as he does when the game is 

played between [two humans]? These questions 
replace our original, "Can machines think?"



PRECURSOR TO NATURAL 
LANGUAGE PROCESSING
Mechanical translation started in the 1930s 
• Largely based on dictionary lookups

Georgetown-IBM Experiment:
• Translated 60 Russian sentences to English

• Fairly basic system behind the scenes
• Highly publicized, system ended up spectacularly failing

Funding dried up; not much research in “mechanical 
translation” until the 1980s …
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STATISTICAL NATURAL 
LANGUAGE PROCESSING
Pre-1980s: primarily based on sets of hand-tuned rules
Post-1980s: introduction of machine learning to NLP
• Initially, decision trees learned what-if rules automatically

• Then, hidden Markov models (HMMs) were used for part of 
speech (POS) tagging

• Explosion of statistical models for language
• Recent work focuses on purely unsupervised or semi-

supervised learning of models

We’ll cover some of this in the machine learning lectures!
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NLP IN DATA SCIENCE
In Mini-Project #1, you used requests and BeautifulSoup
to scrape structured data from the web
Lots of data come as unstructured free text:   ???????????
• Facebook posts

• Amazon Reviews

• Wikileaks dump
Data science: want to get some meaningful information from 
unstructured text
• Need to get some level of understanding what the text says
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UNDERSTANDING 
LANGUAGE IS HARD
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One morning I shot an elephant in my pajamas.

How he got into my pajamas, I'll never know.

Groucho Marx

?



UNDERSTANDING 
LANGUAGE IS HARD
The Winograd Schema Challenge:
• Proposed by Levesque as a complement to the Turing Test

Formally, need to pick out the antecedent of an ambiguous 
pronoun:

Levesque argues that understanding such sentences 
requires more than NLP, but also commonsense reasoning 
and deep contextual reasoning
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The city councilmen refused the demonstrators a 
permit because they [feared/advocated] violence.

Terry Winograd



UNDERSTANDING 
LANGUAGE IS HARD?

Perhaps we can get some signal (in this case, sentiment) 
without truly understanding the text …
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a horrible stupid game,it's like 5 years ago game,900p 20~30f, i

don't play this **** anymore it's like someone give me a **** to play 

,no this time sorry,so Nintendo go f yourself pls

Nsucks7752, March 6, 2017, Metacritic

I haven't played it that much yet, but it's shaping to be one of the 

greatest games ever made! It exudes beauty in every single pixel 

of it. It's a masterpiece. 10/10

fabchan, March 3, 2017, Metacritic



“SOME SIGNAL”
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or

Possible signals ?????????



“SOME SIGNAL”
What type of article is this?
• Sports

• Political

• Dark comedy

What entities are covered?
• And are they covered with 

positive or negative 
sentiment?

Possible signals ????????
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ASIDE: TERMINOLOGY
Documents: groups of free text
• Actual documents (NYT article, journal paper)

• Entries in a table

Corpus: a collection of documents
Terms: individual words
• Separated by whitespace or punctuation

16



NLP TASKS
Syntax: refers to the grammatical structure of language
• The rules via which one forms sentences/expressions

Semantics: the study of meaning of language

John is rectangular and a rainbow.
• Syntactically correct

• Semantically meaningless
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SYNTAX
Tokenization

• Splitting sentences into tokens
Lemmatization/Stemming

• Turning “organizing” and “organized” into “organiz”
Morphological Segmentation

• How words are formed, and relationships of different parts
• Easy for English, but other languages are difficult

Part-of-speech (POS) Tagging
• Determine whether a word is a noun/adverb/verb etc.

Parsing 
• Create a “parse tree” for a sentence
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SEMANTICS: INFORMATION 
EXTRACTION
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SEMANTICS: NAMED 
ENTITY RECOGNITION
Identifying key entities in text

20



SEMANTICS: 
SENTIMENT ANALYSIS
Deciding if reviews/opinions are positive or negative
Heavily used by ad industry today
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SEMANTICS: MACHINE 
TRANSLATION
Translating from one 
language to another
Simple substitution of 
words doesn’t work very 
well
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(Image: Google) 



SEMANTICS: MACHINE 
TRANSLATION
0> how long before the next flight to Alice Springs?
1> wie lang vor dem folgenden Flug zu Alice Springs?
2> how long before the following flight to Alice jump?
3> wie lang vor dem folgenden Flug zu Alice springen Sie?
4> how long before the following flight to Alice do you jump?
5> wie lang, bevor der folgende Flug zu Alice tun, Sie springen?
6> how long, before the following flight to Alice does, do you jump?
7> wie lang bevor der folgende Flug zu Alice tut, tun Sie springen?
8> how long before the following flight to Alice does, do you jump?
9> wie lang, bevor der folgende Flug zu Alice tut, tun Sie springen?
10> how long, before the following flight does to Alice, do do you jump?
11> wie lang bevor der folgende Flug zu Alice tut, Sie tun Sprung?
12> how long before the following flight does leap to Alice, does you?

23From NLTK Book



SEMANTICS: QUESTION 
ANSWERING
Answer questions posed a user with specific answers
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WILLIAM WILKINSON’S 
“AN ACCOUNT OF THE PRINCIPALITIES OF

WALLACHIA AND MOLDOVIA”
INSPIRED THIS AUTHOR’S

MOST FAMOUS NOVEL

Bram 
Stoker



SEMANTICS: SPOKEN 
DIALOGUE SYSTEMS
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SEMANTICS: TEXTUAL 
ENTAILMENT
Given two text fragments, determine if one being true entails 
the other, entails the other's negation, or allows the other to 
be either true or false
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SEMANTICS: DOCUMENT 
SUMMARIZATION
Quite a few tools out there today… e.g., SMMRY

27



OTHER TASKS
Speech Recognition
Caption Generation
Natural Language Generation
Optical Character Recognition
Word Sense Disambiguation

• serve: help with food or drink; hold an office; put ball into play
…

Doing all of these for many different languages
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SEMANTICS: TEXT 
CLASSIFICATION
Is it spam?
Who wrote this paper?  (Author identification)
• https://en.wikipedia.org/wiki/The_Federalist_Papers#Authorship

• https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm

¡Identificación del idioma!
Sentiment analysis
What type of document is this?
When was this document written?
Readability assessment
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https://en.wikipedia.org/wiki/The_Federalist_Papers
https://www.uwgb.edu/dutchs/pseudosc/hidncode.htm


TEXT CLASSIFICATION
Input:
• A document w

• A set of classes Y = {y1, y2, …, yJ}

Output:
• A predicted class y ∈ Y

(You will spend much more time on classification problems 
throughout the program, this is just a light intro!)
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TEXT CLASSIFICATION
Hand-coded rules based on combinations of terms (and 
possibly other context)
If email w:
• Sent from a DNSBL (DNS blacklist) OR
• Contains “Nigerian prince” OR
• Contains URL with Unicode OR …

Then: yw = spam
Pros:  ?????????
• Domain expertise, human-understandable

Cons:  ?????????
• Brittle, expensive to maintain, overly conservative
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TEXT CLASSIFICATION
Input:
• A document w

• A set of classes Y = {y1, y2, …, yJ}

• A training set of m hand-labeled documents
{(w1, y1), (w2, y2), …, (wm, ym)}

Output:
• A learned classifier wà y

This is an example of supervised learning
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REPRESENTING A 
DOCUMENT “IN MATH”
Simplest method: bag of words

Represent each document as a vector of word frequencies
• Order of words does not matter, just #occurrences

33



BAG OF WORDS EXAMPLE
the quick brown fox jumps over the lazy dog
I am he as you are he as you are me
he said the CMSC320 is 189 more CMSCs than the CMSC131
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TERM FREQUENCY
Term frequency: the number of times a term appears in a 
specific document 
• tfij: frequency of word j in document i

This can be the raw count (like in the BOW in the last slide):
• tfij ∈ {0,1} if word j appears or doesn’t appear in doc i

• log(1 + tfij) – reduce the effect of outliers

• tfij / maxj tfij – normalize by document i’s most frequent word

What can we do with this?
• Use as features to learn a classifier w à y …!
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DEFINING FEATURES FROM 
TERM FREQUENCY
Suppose we are classifying if a document was written by The 
Beatles or not (i.e., binary classification):

• Two classes y ∈ Y = { 0, 1 } = { not_beatles, beatles }
Let’s use tfij ∈ {0,1}, which gives:

Then represent documents with a feature function:
f(x, y = not_beatles = 0) = [xT, 0T, 1]T
f(x, y = beatles = 1) = [0T, xT, 1]T 36
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LINEAR CLASSIFICATION
We can then define weights θ for each feature

θ = { <CMSC320, not_beatles> = +1,
<CMSC320, beatles> = -1,
<walrus, not_beatles> = -0.3,
<walrus, beatles> = +1,
<the, not_beatles> = 0,
<the, beatles>, 0, … }

Write weights as vector that aligns with feature mapping
Score ! of an instance x and class y is the sum of the 
weights for the features in that class:

!xy = Σ θn fn(x, y)

= θT f(x, y)
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LINEAR CLASSIFICATION
We have a feature function f(x, y) and a score !xy = θT f(x, y)
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ŷ = argmax
y

✓|f(x, y)

For each class y ∈ { not_beatles, beatles }

Compute the score of the document 
for that class

And return the class with 
highest score!

Where did these weights 
come from? We’ll talk about 
this in the ML lectures …(… and also this whole 

“linear classifier” thing.)



EXPLICIT EXAMPLE
We are interested in classifying documents into one of two 
classes y ∈ Y = { 0, 1 } = { hates_cats, likes_cats}
Document 1: I like cats
Document 2: I hate cats

Now, represent documents with a feature function:
f(x, y = hates_cats = 0) = [xT, 0T, 1]T
f(x, y = likes_cats = 1) = [0T, xT, 1]T
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I lik
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1 1 0 1
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x2T =

y1 = ?
y2 = ?



EXPLICIT EXAMPLE
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I lik
e

ha
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--

1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

I lik
e

ha
te

ca
ts

1 1 0 1
1 0 1 1

x1T =
x2T =

y1 = ?
y2 = ?

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

f(x, y = 0) = [xT, 0T, 1]T
f(x, y = 1) = [0T, xT, 1]T

y=0: hates_cats y=1: likes_cats (1)



EXPLICIT EXAMPLE
Now, assume we have weights θ for each feature

θ = { <I, hates_cats> = 0, <I, likes_cats> = 0,

<like, hates_cats> = -1, <like, likes_cats> = +1,

<hate, hates_cats> = +1, <hate, likes_cats> = -1,

<cats, hates_cats> = -0.1, <cats, likes_cats = +0.5> }

Write weights as vector that aligns with feature mapping:
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I lik
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1 1 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1
1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 1

f(x1, y = hates_cats = 0) =
f(x1, y = likes_cats = 1) =

f(x2, y = hates_cats = 0) =
f(x2, y = likes_cats = 1) =

0 -1 1 -0.1 0 1 -1 0.5 1Parameter vector θ T =
y=0: hates_cats y=1: likes_cats (1)



EXPLICIT EXAMPLE
Score ! of an instance x and class y is the sum of the 
weights for the features in that class:

!xy = Σ θn fn(x, y)

= θT f(x, y)
Let’s compute !x1,y=hates_cats …

• !x1,y=hates_cats = θT f(x1, y = hates_cats = 0)

• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1
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0 -1 1 -0.1 0 1 -1 0.5 1θ T =

hates_cats
likes_cats

(1)

1 I
1 like
0 hate
1 cats
0 I
0 like
0 hate
0 cats
1 –
f(x1, y = 0)



EXPLICIT EXAMPLE
Saving the boring stuff:
• !x1,y=hates_cats = -0.1; !x1,y=likes_cats = +2.5
• !x2,y=hates_cats = +1.9; !x2,y=likes_cats = +0.5

We want to predict the class of each document:

Document 1: argmax{ !x1,y=hates_cats, !x1,y=likes_cats }   ????????
Document 2: argmax{ !x2,y=hates_cats, !x2,y=likes_cats }   ????????
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Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)



INVERSE DOCUMENT 
FREQUENCY
Recall:
• tfij: frequency of word j in document i

Any issues with this ??????????
• Term frequency gets overloaded by common words

Inverse Document Frequency (IDF): weight individual words 
negatively by how frequently they appear in the corpus:

IDF is just defined for a word j, not word/document pair j, i
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idfj = log

✓
#documents

#documents with word j

◆



INVERSE DOCUMENT 
FREQUENCY
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TF-IDF
How do we use the IDF weights?
Term frequency inverse document frequency (TF-IDF):
• TF-IDF score: tfij x idfj

This ends up working better than raw scores for classification 
and for computing similarity between documents.
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TOKENIZATION
First step towards text processing
For English, just split on non-alphanumerical characters

• Need to deal with cases like: I’m, or France’s, or Hewlett-
Packard

• Should “San Francisco” be one token or two?
Other languages introduce additional issues

• L'ensemble ® one token or two?
• German noun compounds are not segmented

• Lebensversicherungsgesellschaftsangestellter
• Chinese/Japanese more complicated because of white 

spaces
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OTHER BASIC TERMS
Lemmatization

• Reduce inflections or variant forms to base form
• am, are, is ® be
• car, cars, car's, cars' ® car

• the boy's cars are different colors ® the boy car be different 
color

Morphology/Morphemes
• The small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to stems

• Often with grammatical functions
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STEMMING
Reduce terms to their stems in information retrieval
Stemming is crude chopping of affixes

• language dependent
• e.g., automate(s), automatic, automation all reduced to 

automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress

49



NLP IN PYTHON
Two majors libraries for performing basic NLP in Python:
• Natural Language Toolkit (NLTK): started as research code, 

now widely used in industry and research

• Spacy: much newer implementation, more streamlined

Pros and cons to both:
• NLTK has more “stuff” implemented, is more customizable

• This is a blessing and a curse
• Spacy is younger and feature 

sparse, but can be much faster

• Both are Anaconda packages

50



NLTK EXAMPLES
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import nltk

# Tokenize, aka find the terms in, a sentence
sentence = ”A wizard is never late, nor is he early. 
He arrives precisely when he means to.”
tokens = nltk.word_tokenize(sentence)

LookupError:
**********************************************************************

Resource 'tokenizers/punkt/PY3/english.pickle' not found.
Please use the NLTK Downloader to obtain the resource: >>>
nltk.download()
Searched in:

- '/Users/spook/nltk_data'
- '/usr/share/nltk_data'
- '/usr/local/share/nltk_data'
- '/usr/lib/nltk_data'
- '/usr/local/lib/nltk_data'
- ''

**********************************************************************

Fool of a Took!



NLTK EXAMPLES
Corpora are, by definition, large bodies of text
• NLTK relies on a large corpus set to perform various 

functionalities; you can pick and choose:

52

# Launch a GUI browser of available corpora
nltk.download()

# Or download 
everything at once!
nltk.download(“all”)



NLTK EXAMPLES

(This will also tokenize words like “o’clock” into one term, 
and “didn’t” into two term, “did” and “n’t”.)

53

import nltk

# Tokenize, aka find the terms in, a sentence
sentence = ”A wizard is never late, nor is he early. 
He arrives precisely when he means to.”
tokens = nltk.word_tokenize(sentence)

['A', 'wizard', 'is', 'never', 'late', ',', 'nor', 
'is', 'he', 'early', '.', 'He', 'arrives', 
'precisely', 'when', 'he', 'means', 'to', '.']



NLTK EXAMPLES
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# Determine parts of speech (POS) tags
tagged = nltk.pos_tag(tokens)
tagged[:10]

[('A', 'DT'), ('wizard', 'NN'), ('is', 'VBZ'), 
('never', 'RB'), ('late', 'RB'), (',', ','), ('nor', 
'CC'), ('is', 'VBZ'), ('he', 'PRP'), ('early', 'RB')]

Abbreviation POS
DT Determiner
NN Noun
VBZ Verb (3rd person singular present)
RB Adverb
CC Conjunction
PRP Personal Pronoun
Full list: https://cs.nyu.edu/grishman/jet/guide/PennPOS.html



NLTK EXAMPLES
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# Find named entities & visualize
entities = nltk.chunk.ne_chunk( nltk.pos_tag( 
nltk.word_tokenize(“””

The Shire was divided into four quarters, the Farthings already referred 
to. North, South, East, and West; and these again each into a number of 
folklands, which still bore the names of some of the old leading families, 
although by the time of this history these names were no longer found only in 
their proper folklands. Nearly all Tooks still lived in the Tookland, but 
that was not true of many other families, such as the Bagginses or the 
Boffins. Outside the Farthings were the East and West Marches: the Buckland 
(see beginning of Chapter V, Book I); and the Westmarch added to the Shire in 
S.R. 1462.

“””)))
entities.draw()
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Measuring (semantic) similarity



VECTOR SEMANTICS OF 
DOCUMENTS/TERMS
“fast” is similar to “rapid”
“tall” is similar to “height”
Question answering:
Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”

57Many thanks to Dan Jurafsky here!



From context words humans can guess tesgüino means
• an alcoholic beverage like beer

Intuition for algorithm: 
• Two words are similar if they have similar word contexts.

INTUITION OF DISTRIBUTIONAL 
WORD SIMILARITY

A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

[DJ] 58



FOUR KINDS OF 
VECTOR MODELS
Sparse vector representations

• Mutual-information weighted word co-occurrence matrices
Dense vector representations:

• Singular value decomposition (and Latent Semantic Analysis)
• Neural-network-inspired models (skip-grams, CBOW)
• Brown clusters

• Won’t go into these much – basically, classify terms into “word 
classes” using a particular clustering method

• Hard clustering due to Brown et al. 1992, embed words in 
some space and cluster.  Generally, better methods out there 
now …

59[DJ]



SHARED INTUITION
Model the meaning of a word by embedding in a vector 
space.
The meaning of a word is a vector of numbers

• Vector models are also called “embeddings”.
Contrast: word meaning is represented in many 
computational linguistic applications by a vocabulary index 
(“word number 545”)

60[DJ]



As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

REMINDER: TERM-
DOCUMENT MATRIX
Each cell: count of term t in a document d:  tft,d: 

• Each document is a count vector in ℕv: a column below 

61[DJ]



REMINDER: TERM-
DOCUMENT MATRIX
Two documents are similar if their vectors are similar

62

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]



THE WORDS IN A TERM-
DOCUMENT MATRIX
Each word is a count vector in ℕD: a row below 

63

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]



THE WORDS IN A TERM-
DOCUMENT MATRIX
Two words are similar if their vectors are similar

64

As#You#Like#It Twelfth#Night Julius#Caesar Henry#V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

[DJ]



TERM-CONTEXT MATRIX 
FOR WORD SIMILARITY
Two words are similar in meaning if their context vectors are 
similar

65

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

[DJ]



THE WORD-WORD OR 
WORD-CONTEXT MATRIX
Instead of entire documents, use smaller contexts

• Paragraph
• Window of ± 4 words

A word is now defined by a vector over counts of context 
words
• Instead of each vector being of length D
• Each vector is now of length |V|
The word-word matrix is |V|x|V|, not DxD

66[DJ]



WORD-WORD MATRIX
SAMPLE CONTEXTS ± 7 WORDS

67

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

19.1 • WORDS AND VECTORS 3

tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

… …
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WORD-WORD MATRIX
We showed only 4x6, but the real matrix is 50,000 x 50,000

• So it’s very sparse
• Most values are 0.

• That’s OK, since there are lots of efficient algorithms for 
sparse matrices.

The size of windows depends on your goals
• The shorter the windows , the more syntactic the 

representation
• ± 1-3 very syntacticy

• The longer the windows, the more semantic the 
representation

• ± 4-10 more semanticy
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MEASURING 
SIMILARITY
Given 2 target words v and w
• Need a way to measure their similarity.
Most measure of vectors similarity are based on the:
• Dot product or inner product from linear algebra

• High when two vectors have large values in same 
dimensions. 

• Low (in fact 0) for orthogonal vectors with zeros in 
complementary distribution
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computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
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PROBLEM WITH DOT 
PRODUCT

Dot product is longer if the vector is longer. Vector length:

Vectors are longer if they have higher values in each dimension
That means more frequent words will have higher dot products
That’s bad: we don’t want a similarity metric to be sensitive to 
word frequency
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SOLUTION: COSINE
Just divide the dot product by the length of the two vectors!

This turns out to be the cosine of the angle between them!
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SIMILARITY BETWEEN 
DOCUMENTS
Given two documents x and y, represented by their TF-IDF 
vectors (or any vectors), the cosine similarity is:

Formally, it measures the cosine of the angle between two 
vectors x and y:
• cos(0o) = 1, cos(90o) = 0      ??????????

Similar documents have high cosine similarity;
dissimilar documents have low cosine similarity.
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similarity(x,y) =
x|y

|x|⇥ |y|



EXAMPLE
large data computer

apricot 2 0 0
digital 0 1 2
information 1 6 1
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Which pair of words is more similar?

cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

1+ 0+ 0

1+36+1

1+36+1

0+1+ 4

0+1+ 4
     0+ 6+ 2    

     0+ 0+ 0    

=
8
38 5

= .58

= 0

2 + 0 + 0
2 + 0 + 0 = 2

2 38 = .23



(MINIMUM) EDIT 
DISTANCE
How similar are two strings?
Many different distance metrics (as we saw earlier when 
discussing entity resolution

• Typically based on the number of edit operations needed to 
transform from one to the other

Useful in NLP context for spelling correction, information 
extraction, speech recognition, etc.
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LANGUAGE MODELING
Assign a probability to a sentence

• Machine Translation:

• P(high winds tonite) > P(large winds tonite)

• Spell Correction

• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets
from)

• Speech Recognition

• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!
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LANGUAGE MODELING
Goal: compute the probability of a sentence or sequence of 
words:
• P(W) = P(w1,w2,w3,w4,w5…wn)

Related task: probability of an upcoming word:
• P(w5|w1,w2,w3,w4)

A model that computes either of these:
• P(W)     or     P(wn|w1,w2…wn-1)       is called a language model.

(We won’t talk about this much further in this class.)
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BRIEF ASIDE: N-
GRAMS
n-gram: Contiguous sequence of n tokens/words etc.
• Unigram, bigram, trigram, “four-gram”, “five-gram”, …

Text: David Golinkin is the editor or author of eighteen books, and over 150 
responsa, articles, sermons and books
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SIMPLEST CASE: 
UNIGRAM MODEL
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fifth, an, of, futures, the, an, incorporated, a, 
a, the, inflation, most, dollars, quarter, in, is, 
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model
  

€ 

P(w1w2…wn ) ≈ P(wi)
i
∏



BIGRAM MODEL
Condition on the previous word:

80

texaco, rose, one, in, this, issue, is, pursuing, growth, in, 
a, boiler, house, said, mr., gurria, mexico, 's, motion, 
control, proposal, without, permission, from, five, hundred, 
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)



N-GRAM MODELS
We can extend to trigrams, 4-grams, 5-grams
In general this is an insufficient model of language

• because language has long-distance dependencies:

• “The computer which I had just put into the machine 
room on the fifth floor crashed.”

But we can often get away with N-gram models
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