Al and Machine Learning

The Turing Test В

Turing attack

How can we show a machine is Intelligent? Let A = machine. Let C = Intelligent. Let B = someone that "we" claim is intelligent. How can we show A = C? Hmm. It's subjective? Well most (normal) say B = C. So if can we show that A = B, then we can show that A = C!

Turing attack

So subjective criteria when normal can be reasoned with transitivity!

E.g., let C = Greatest basketball player ever. Most "normal" say Jordan. Let Jordan = B. Now is Lebron = the greatest ever? Let Lebron = A.

Well we have to show that A = C, or A = B. Let's assume A = B. Do we wind up in a contradiction? If so A!=B. If not A = B and A = C. Is Lebron the greatest?

Chinese Room Argument

Chinese Room Argument

Searle defines: Strong AI = Understanding Weak AI = pattern recognition and mappings

What do you think?

Loebner prize Mitsuka

The Loebner Prize is an annual competition in artificial intelligence that awards prizes to the computer programs considered by the judges to be the most human-like. The format of the competition is that of a standard Turing test. No one has ever won the silver or gold medal!

Mitsuku Loebner Prize Winner 2013, 2016, 2017, 2018

Mitsuko

Hi, I'm the world's most humanlike conversational AI.

Hi there.

> Who is Donald Trump?

X

Donald Trump now has his finger on the nuclear button?! We're all doomed.

> Who is Donald Trump?

Type a message...

Loebner bronze winner in 2013, 2016, 2017, 2018

Unsupervised vs. Supervised Learning

Supervised learning is aided by training data and human correction. Here's some training data. Learn the patterns. Make your best guess at what the patterns are. We'll feed you test data to figure out if you've understood it. If you stray of course we'll correct you and retrain. Examples include Decision Trees and Neural Networks.

Unsupervised learning is uncorrected and runs on data. It can't classify things "yet". But is very good at clustering and anomaly detection.

Decision Tree Learning

Task:

- Given: collection of examples (x, f(x))
- Return: a function *h* (*hypothesis*) that approximates *f*
- h is a decision tree
- Input: an object or situation described by a set of attributes (or features)
- **Output:** a "decision" the predicts output value for the input.
- The input attributes and the outputs can be discrete or continuous.
- We will focus on decision trees for **Boolean classification**:
- each example is classified as positive or negative.

Decision Tree: The Obama-Clinton Divide

Can we learn In the nominating Is a county contests so far, Senator more than Barack Obama has won the 20 percent black? how counties vote? vast majority of counties with large black or highly educated populations. NO There are not YES This county Senator Hillary Rodham many Africanhas a large Clinton has a commanding Americans in this African-American county. population lead in less-educated counties dominated by whites. Follow the arrows for a more detailed split. And is the high school graduation rate higher 10 than 78 percent? **Obama wins** NO This is a county YES This is a these counties with less-educated county with more 383 to 70. educated voters. voters. And is the high school **Clinton wins** graduation rate higher these counties than 87 percent? **New York Times** 704 to 89. April 16, 2008 NO 78 to 87 YES This is a percent have highly educated a diploma. county. 0 And where is the county? **Obama wins** Northeast or South West or Midwest these counties 185 to 36. **Decision Trees:** In 2000, were many **Clinton wins** a sequence of tests. households poor? these counties 182 to 79. NO At least **Representation very natural for YES** At least 53% earned 47% earned more than less than \$30.000 humans. \$30.000. **Clinton wins** What's the population Style of many "How to" manuals and these counties density? 52 to 25. trouble-shooting Very >61.5 rural people per sq. procedures. **Obama wins** mile these counties In 2004, did Bush beat Kerry badly? 201 to 83. (by more than 16.5 percentage points) Note. Chart excludes Florida YES NO and Michigan. County-level results are not available in Very SB Alaska, Hawaii, Kansas. epub-0 Nebraska, New Mexico, North lican Dakota or Maine. Texas **Clinton wins Obama wins** counties are included twice: these counties these counties once for primary voters and once for caucus participants 48 to 13. 56 to 35. AMANDA COX/

Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections The NEW York TIMES

Decision Tree

•What is a decision tree?

•A tree with two types of nodes:

- Decision nodes
- Leaf nodes

٠

٠

•Decision node: Specifies a choice or test of some attribute with 2 or more alternatives;

•→ every decision node is part of a path to a leaf node

•Leaf node: Indicates classification of an example

 Decision Tree example (is a customer going to buy a computer or not):

Inductive Learning Example

Food (3)	Chat (2)	Fast (2)	Price (3)	Bar (2)	BigTip	
great	yes	yes	normal	no	yes	
great	no	yes	normal	no	yes	Fto
mediocre	yes	no	high	no	no	
great	yes	yes	normal	yes	yes	

Instance Space X: Set of all possible objects described by attributes (often called features).

Target Function f: Mapping from Attributes to Target Feature (often called label) (f is unknown)

Hypothesis Space H: Set of all classification rules h_i we allow.

Training Data D: Set of instances labeled with Target Feature

What is the best Variable (Feature) to use as an indicator of a BigTip?

Entropy & Information Gain

 $InfoGain(feature_d) = Entropy(D) - Entropy(feature_d)$

$$InforGain(feature_d, D) = Entropy(D) - \sum_{t \in feature} (rac{|feature_d = t|}{|D|} * H(feature_d = t))$$

$$Entropy(D) - \sum_{t \ \in \ feature} (\frac{|feature_d = t|}{|D|} * (-\sum_{k \ \in \ target} (P(target = k, feature_d = t) * log_2(P(target = k, feature_d = t))))$$

Obviously ③ Don't Panic. Entropy is just a way to measure disorder = uncertainty in data and uncertainty in "data mappings".

Excel example

								P(yes)		0.5						
	Food 💌	Chat 💌	Fast 🛛 💌	Price 💌	Bar 🛛 💌	Big tip 💌		p(no)		0.5						
	great	yes	yes	normal	no	yes		log2(ye	es)	-1						
	great	no	yes	normal	no	yes		log2(no	o)	-1						
	mediocore	e yes	no	high	no	no		P(yes)*	log2(yes)	-0.5						
	great	yes	yes	normal	yes	no		P(no)*l	log2(no)	-0.5						
								Entrop	py(big tip)	1	Because i	t's 50/50 i	t could go	either way	r = rando	mness = entrop
p(a)	0.7500	0.7500	0.7500	0.7500	0.7500	0.5000										
p(b)	0.2500	0.2500	0.2500	0.2500	0.2500	0.5000										
log2(a)	-0.4150	-0.4150	-0.4150	-0.4150	-0.4150	-1.0000							Food			
log2(b)	-2.0000	-2.0000	-2.0000	-2.0000	-2.0000	-1.0000									medioco	ore
P(a)*log2(a)	-0.3113	-0.3113	-0.3113	-0.3113	-0.3113	-0.5000					great	*				
P(b)*log2(b)	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	-0.5000	entropy	of 1							no ti	p
Entropy()	0.8113	0.8113	0.8113	0.8113	0.8113	1.0000	= chaos!	!			¥					·
mult	0.1875	0.1875	0.1875	0.1875	0.1875	0.2500				Bar						
entropy a (mappings)	0.9183	0.9183	0.9183	0.9183	0.9183											
entropy b (mappings)	0.0000	0.0000	0.0000	0.0000	0.0000			1								
Info Gain	0.3113	0.3113	0.3113	0.3113	0.3113	could pic	cany		no		ye	5				
								1				\leq				
									+			o tin				
on great	reduce se	et to great	only values	including I	Big tip				tip		· ·	io up				
	Food 🎜	Chat 💌	Fast 🛛 💌	Price 💌	Bar 🗾 💌	Big tip 💌										
	great	yes	yes	normal	no	yes										
	great	no	yes	normal	no	yes										
	great	yes	yes	normal	yes	no										
								_								
p(a)		0.6667	1.0000	1.0000	0.6667	0.6667		_								
p(b)		0.3333	0.0000	0.0000	0.3333	0.3333		_								
log2(a)		-0.5850	0.0000	0.0000	-0.5850	-0.5850		_								
log2(b)		-1.5850	0.0000	0.0000	-1.5850	-1.5850										
P(a)*log2(a)		-0.3900	0.0000	0.0000	-0.3900	-0.3900										
P(b)*log2(b)		-0.5283	0.0000	0.0000	-0.5283	-0.5283										
Entropy()		0.9183	0.0000	0.0000	0.9183	0.9183										
mult		0.2222	0.0000	0.0000	0.2222	0.2222										
entropy a (mappings)		1.0000	0.9183	0.9183	0.0000	sub tree										
entropy b (mappings)		0.0000	0.0000	0.0000	0.0000	recalcula	tion									
Info Gain		0.2516	0.0000	0.0000	0.9183											
			0 due to	new H(Big	tip)											

Decision Tree Example: "BigTip"

An example

	toothed	hair	breathes	legs	species
0	True	True	True	True	Mammal
1	True	True	True	True	Mammal
2	True	False	True	False	Reptile
3	False	True	True	True	Mammal
4	True	True	True	True	Mammal
5	True	True	True	True	Mammal
6	True	False	False	False	Reptile
7	True	False	True	False	Reptile
8	True	True	True	True	Mammal
9	False	False	True	True	Reptile

An example

	toothed	hair	breathes	legs	species	
0	True	True	True	True	Mammal	
1	True	True	True	True	Mammal	
3	False	True	True	True	Mammal	
4	True	True	True	True	Mammal	
5	True	True	True	True	Mammal	
8	True	True	True	True	Mammal	

	toothed	hair	breathes	legs	species
2	True	False	True	False	Reptile
6	True	False	False	False	Reptile
7	True	False	True	False	Reptile
9	False	False	True	True	Reptile

An example

							toothed	breathes	legs	species	1. Calculate the entropy
	toothed	breathes	legs	species		0	True	True	True	Mammal	for toothed == True
0	True	True	True	Mammal	True	1	True	True	True	Mammal	Ļ
1	True	True	True	Mammal	toothed == Inc	2	True	True	False	Reptile	2. Calculate the entropy
2	True	True	False	Reptile		4	True	True	True	Mammal	for toothed == False
3	False	True	True	Mammal		5	True	True	True	Mammal	
4	True	True	True	Mammal		6	True	False	False	Reptile	3. Sum up the entropies
5	True	True	True	Mammal		7	True	True	False	Reptile	of 1. and 2.
6	True	False	False	Reptile		8	True	True	True	Mammal	\checkmark
7	True	True	False	Reptile	toother						4. Subtract this sum
8	True	True	True	Mammal	False						from the whole datasets
9	False	True	True	Reptile			toothed	breathes	legs	species	entropy → InfoGain
	·	J				3	False	True	True	Mammal	

9

False

True True

Reptile

entropies sum datasets

After computing the IG of feature toothed do this for features breathes and legs

