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ANNOUNCEMENTS
Project #3 was initially due next Monday (11/19)
Project #3 is now due next-next Wednesday (11/28)
• We will have covered everything by this Wednesday.
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ANNOUNCEMENTS
Project #4 will be released Monday after Thanksgiving (11/26)

• This project does not take very long

• Should be fun!  Visualizing crime data …

Keep thinking about possible data sources for your final 

tutorials (or come talk to us)

• Please get in touch if you’re having trouble with ideas/groups
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TODAY’S LECTURE

Data 
collection

Data 
processing

Exploratory 
analysis

&
Data viz

Analysis, 
hypothesis 
testing, & 

ML

Insight & 
Policy 

Decision

5



TODAY’S LECTURE
Introduction to machine learning
• Formalizing the framework we discussed in the decision tree lecture

• Basic setup and terminology; linear regression & classification

Thanks to: Zico Kolter (CMU) & David Kauchak (Pomona)

6First GIS result for “machine learning”



RECALL: EXPLICIT EXAMPLE 
OF STUFF FROM NLP CLASS
Score ! of an instance x and class y is the sum of the 
weights for the features in that class:

!xy = Σ θn fn(x, y)

= θT f(x, y)
Let’s compute !x1,y=hates_cats …

• !x1,y=hates_cats = θT f(x1, y = hates_cats = 0)

• = 0*1 + -1*1 + 1*0 + -0.1*1 + 0*0 + 1*0 + -1*0 + 0.5*0 + 1*1

• = -1 - 0.1 + 1 = -0.1
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RECALL: EXPLICIT EXAMPLE 
OF STUFF FROM NLP CLASS
Saving the boring stuff:
• !x1,y=hates_cats = -0.1; !x1,y=likes_cats = +2.5
• !x2,y=hates_cats = +1.9; !x2,y=likes_cats = +0.5

We want to predict the class of each document:

Document 1: argmax{ !x1,y=hates_cats, !x1,y=likes_cats }   ????????
Document 2: argmax{ !x2,y=hates_cats, !x2,y=likes_cats }   ????????
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Document 1: I like cats

Document 2: I hate cats

ŷ = argmax
y

✓|f(x, y)



MACHINE LEARNING
We used a linear model to classify input documents
The model parameters θ were given to us a priori
• (John created them by hand.)

• Typically, we cannot specify a model by hand.

Supervised machine learning provides a way to automatically 
infer the predictive model from labeled data.
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Training Data

(x(1), y(1))
(x(2), y(2))
(x(3), y(3))

…

ML Algorithm

Hypothesis function
y(i) = h(x(i))

Predictions

New example x
y = h(x)



TERMINOLOGY
Input features:

Outputs:
y(i) ∈ {0, 1} = { hates_cats, likes_cats }

Model parameters: 
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TERMINOLOGY
Hypothesis function: 
E.g., linear classifiers predict outputs using:

Loss function:
• Measures difference between a prediction and the true output

• E.g., squared loss:

• E.g., hinge loss:  
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`(y) = max(0, 1� t · y)

Output t = {-1,+1} based 
on -1 or +1 class label

Classifier score y



THE CANONICAL MACHINE 
LEARNING PROBLEM
At the end of the day, we want to learn a hypothesis function 
that predicts the actual outputs well.
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Given an hypothesis 
function and loss function

Over all possible 
parameterizations 

And over all your 
training data*

Choose the parameterization 
that minimizes loss!

*Not actually what we want – want it over the world of inputs – will discuss later …



HOW DO I MACHINE LEARN?
1. What is the hypothesis function?

• Domain knowledge and EDA can help here.
2. What is the loss function?

• We’ve discussed two already: squared and absolute.
3. How do we solve the optimization problem?

• (We’ll cover gradient descent and stochastic gradient 
descent in class, but if you are interested, take CMSC422!)

13First GIS result for “optimization”
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QUICK ASIDE ABOUT 
LOSS FUNCTIONS
Say we’re back to classifying documents into:
• hates_cats, translated to label y = -1

• likes_cats, translated to label y = +1

We want some parameter vector θ such that:
• !xy > 0 if the feature vector x is of class likes_cat; (y = +1)

• !xy < 0 if x’s label is y = -1

We want a hyperplane that separates positive examples from 
negative examples.
Why not use 0/1 loss; that is, the number of wrong answers?
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MINIMIZING 0/1 LOSS IN A 
SINGLE DIMENSION

loss

Each time we change θ such that the example is right 
(wrong) the loss will increase (decrease)

θ

nX

i=1

1
h
y(i) · h✓, x(i)i  0

i



MINIMIZING 0/1 LOSS OVER 
ALL Θ

This is NP-hard.
• Small changes in any θ can have large changes in the loss 

(the change isn’t continuous)

• There can be many local minima

• At any give point, we don’t have much information to direct us 
towards any minima

Maybe we should consider other loss functions.

argmin
✓

nX

i=1

1
h
y(i) · h✓, x(i)i  0

i



DESIRABLE PROPERTIES

What are some desirable properties of a loss function????????
• Continuous so we get a local indication of the direction of 

minimization
• Only one (i.e., global) minimum

loss

θ



CONVEX FUNCTIONS
“A function is convex if the line segment between any two 
points on its graph lies above it.”
Formally, given function f and two points x, y:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y) 8� 2 [0, 1]



SURROGATE LOSS 
FUNCTIONS
For many applications, we really would like to minimize the 
0/1 loss

A surrogate loss function is a loss function that provides an 
upper bound on the actual loss function (in this case, 0/1)

We’d like to identify convex surrogate loss functions to make 
them easier to minimize

Key to a loss function is how it scores the difference between 
the actual label y and the predicted label y’



SURROGATE LOSS 
FUNCTIONS
0/1 loss:
Any ideas for surrogate loss functions ??????????
Want: a function that is continuous and convex and upper 
bounds the 0/1 loss.
• Hinge:

• Exponential:

• Squared:

What do each of these penalize?????????

`(ŷ, y) = 1 [yŷ  0]

`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = (y � ŷ)2
`(ŷ, y) = e�yŷ



SURROGATE LOSS FUNCTIONS
0/1 loss:

Squared loss:

Hinge:

Exponential:

`(ŷ, y) = 1 [yŷ  0]
`(ŷ, y) = max(0, 1� yŷ)

`(ŷ, y) = e�yŷ

`(ŷ, y) = (y � ŷ)2

(Recall: y in {-1, +1})



SOME ML ALGORITHMS
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Name Hypothesis 
Function

Loss Function Optimization
Approach

Least squares Linear Squared Analytical or GD

Linear regression Linear Squared Analytical or GD

Support Vector 
Machine (SVM)

Linear, Kernel Hinge Analytical or GD

Perceptron Linear Perceptron
criterion (~Hinge)

Perceptron 
algorithm, others

Neural Networks Composed
nonlinear

Squared, Hinge SGD

Decision Trees Hierarchical
halfplanes

Many Greedy

Naïve Bayes Linear Joint probability #SAT

Follow the white rabbit: https://en.wikipedia.org/wiki/List_of_machine_learning_concepts

https://en.wikipedia.org/wiki/List_of_machine_learning_concepts
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RECALL: LINEAR 
REGRESSION
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LINEAR REGRESSION AS 
MACHINE LEARNING
Let’s consider linear regression that minimizes the sum of 
squared error, i.e., least squares …
1. Hypothesis function:   ????????

• Linear hypothesis function 

2. Loss function:   ????????
• Squared error loss

3. Optimization problem:   ????????
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LINEAR REGRESSION AS 
MACHINE LEARNING
Rewrite inputs:

Rewrite optimization problem:
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Each row is a feature vector paired 
with a label for a single input

m labeled inputs

n features

*Recall: 



GRADIENTS
In Lecture 11, we showed that the mean is the point that 
minimizes the residual sum of squares:
• Solved minimization by finding point where derivative is zero

• (Convex functions like RSS à single global minimum.)

The gradient is the multivariate generalization of a derivative.
For a function                           the gradient is a vector of all n
partial derivatives:
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GRADIENTS

29Gradient of f(x,y) = xe−(x2 + y2)



GRADIENTS
Minimizing a multivariate function involves finding a point 
where the gradient is zero:

Points where the gradient is zero are local minima
• If the function is convex, also a global minimum
Let’s solve the least squares problem!
We’ll use the multivariate generalizations of
some concepts from MATH141/142 …
• Chain rule: 

• Gradient of squared ℓ2 norm:
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LEAST SQUARES
Recall the least squares optimization problem:

What is the gradient of the optimization objective  ????????

31

Chain rule:

Gradient of norm:



LEAST SQUARES
Recall: points where the gradient equals zero are minima.

So where do we go from here?????????
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XT (X✓ � y) = 0 Solve for model 
parameters θ

XTX✓ �XT y = 0 XTX✓ = XT y

(XTX)�1XTX✓ = (XTX)�1XT y

✓ = (XTX)�1XT y



ML IN PYTHON
Python has tons of hooks into a variety of machine learning 
libraries.  (Part of why this course is taught in Python!)
Scikit-learn is the most well-known library:
• Classification (SVN, K-NN, Random Forests, …)

• Regression (SVR, Ridge, Lasso, …)

• Clustering (k-Means, spectral, mean-shift, …)

• Dimensionality reduction (PCA, matrix factorization, …)

• Model selection (grid search, cross validation, …)

• Preprocessing (cleaning, EDA, …)

Built on the NumPy stack; plays well with Matplotlib.
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LEAST SQUARES IN PYTHON
You don’t need Scikit-learn for OLS …

But let’s say you did want to use it.
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# Analytic solution to OLS using Numpy
params = np.linalg.solve(X.T.dot(X), X.T.dot(y))

✓ = (XTX)�1XT y

from sklearn import linear_model

X = [[0,0], [1,1], [2,2]]
Y = [0, 1, 2]

# Solve OLS using Scikit-Learn
reg = linear_model.LinearRegression()
reg.fit(X, Y)
reg.coef_

array([ 0.5, 0.5])



NEXT CLASSES:
(STOCHASTIC) 

GRADIENT DESCENT
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TODAY:
GRADIENT DESCENT
We used the gradient as a condition for optimality
It also gives the local direction of steepest increase for a 
function:

Intuitive idea: take small steps against the gradient.

36Image from Zico Kolter

If there is no increase, 
gradient is zero = local 
minimum!



GRADIENT DESCENT
Algorithm for any* hypothesis function                            , loss 
function                               , step size     :
Initialize the parameter vector:
•

Repeat until satisfied (e.g., exact or approximate 
convergence):
• Compute gradient:
• Update parameters:

37*must be reasonably well behaved



EXAMPLE
Function: f(x,y) = x2 + 2y2

Gradient:  ??????????

Let’s take a gradient step 
from (-2, +1):

Step in the direction (-4, -
2), scaled by step size

Repeat until no movement
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rf(x, y) =


2x
4y

�

rf(�2, 1) =


4
2

�



GRADIENT DESCENT 
FOR OLS
Algorithm for linear hypothesis function and squared error 
loss function (combined to                            , like before):

Initialize the parameter vector:
•

Repeat until satisfied:
• Compute gradient:
• Update parameters:

39

1/2kX✓ � yk22



GRADIENT DESCENT IN 
PURE(-ISH) PYTHON

Implicitly using squared loss and linear hypothesis function 
above; drop in your favorite gradient for kicks!
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# Training data (X, y), T time steps, alpha step
def grad_descent(X, y, T, alpha):

m, n = X.shape # m = #examples, n = #features
theta = np.zeros(n)    # initialize parameters
f = np.zeros(T)        # track loss over time

for i in range(T):
# loss for current parameter vector theta
f[i] = 0.5*np.linalg.norm(X.dot(theta) – y)**2
# compute steepest ascent at f(theta)
g = X.T.dot(X.dot(theta) – y)
# step down the gradient
theta = theta – alpha*g

return theta, f



PLOTTING LOSS OVER TIME

Why ????????

41Image from Zico Kolter



ITERATIVE VS ANALYTIC 
SOLUTIONS
But we already had an analytic solution!  What gives?
Recall: last class we discuss 0/1 loss, and using convex 
surrogate loss functions for tractability
One such function, the absolute error loss function, leads to:

Problems ????????
• Not differentiable!  But subgradients?

• No closed form!

• So you must use iterative method
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LEAST ABSOLUTE 
DEVIATIONS
Can solve this using gradient descent and the gradient:

Simple to change in our Python code:

43

for i in range(T):
# loss for current parameter vector theta
f[i] = np.linalg.norm(X.dot(theta) – y, 1) 
# compute steepest ascent at f(theta)
g = X.T.dot( np.sign(X.dot(theta) – y) )
# step down the gradient
theta = theta – alpha*g

return theta, f


