# INTRODUCTION TO DATA SCIENCE

#### JOHN P DICKERSON PREM SAGGAR

Lecture #22 - 11/12/2018

CMSC320 Mondays & Wednesdays 2:00pm – 3:15pm



## **ANNOUNCEMENTS**

#### Project #3 was initially due next Monday (11/19) Project #3 is now due next-next Wednesday (11/28)

• We will have covered everything by this Wednesday.





## **ANNOUNCEMENTS**

Project #4 will be released Monday after Thanksgiving (11/26)

- This project does not take very long
- Should be fun! Visualizing crime data ...

# Keep thinking about possible data sources for your final tutorials (or come talk to us)

• Please get in touch if you're having trouble with ideas/groups



### **TODAY'S LECTURE**



## **TODAY'S LECTURE**

#### Introduction to machine learning

- Formalizing the framework we discussed in the decision tree lecture
- Basic setup and terminology; linear regression & classification

Thanks to: Zico Kolter (CMU) & David Kauchak (Pomona)



First GIS result for "machine learning"

## **RECALL: EXPLICIT EXAMPLE OF STUFF FROM NLP CLASS**

0.5

1

Score  $\psi$  of an instance x and class y is the sum of the weights for the features in that class:

 $\psi_{\mathbf{x}y} = \Sigma \ \theta_n \ f_n(\mathbf{x}, \ y)$  $= \boldsymbol{\theta}^{\mathsf{T}} \ \mathbf{f}(\mathbf{x}, \ y)$ 

Let's compute  $\psi_{x1,y=hates\_cats}$  ...

•  $\psi_{x1,y=hates\_cats} = \theta^T f(x_1, y = hates\_cats = 0)$ 

$$\mathbf{9}^{\mathsf{T}} = \begin{bmatrix} 0 & -1 & 1 & -0.1 & 0 & 1 & -1 \end{bmatrix}$$



## **RECALL: EXPLICIT EXAMPLE OF STUFF FROM NLP CLASS**

#### Saving the boring stuff:

- $\psi_{x1,y=hates\_cats} = -0.1; \psi_{x1,y=likes\_cats} = +2.5$  Document 1: I like cats
- $\psi_{x2,y=hates\_cats} = +1.9; \psi_{x2,y=likes\_cats} = +0.5$  Docum

Document 2: I hate cats

We want to predict the class of each document:

$$\hat{y} = \arg\max_{y} \theta^{\mathsf{T}} \mathbf{f}(\mathbf{x}, y)$$

Document 1: argmax{  $\psi_{x1,y=hates\_cats}$ ,  $\psi_{x1,y=likes\_cats}$  } ??????? Document 2: argmax{  $\psi_{x2,y=hates\_cats}$ ,  $\psi_{x2,y=likes\_cats}$  } ???????



## **MACHINE LEARNING**

We used a linear model to classify input documents

The model parameters  $\theta$  were given to us a priori

- (John created them by hand.)
- Typically, we cannot specify a model by hand.

Supervised machine learning provides a way to automatically infer the predictive model from labeled data.



### TERMINOLOGY

Input features: 
$$x^{(i)} \in \mathbb{R}^n, i = 1, ..., m$$
  
 $x^{(1)T} = \begin{array}{c} \underbrace{x^{(i)}}_{X^{(2)T}} \in \mathbb{R}^n, i = 1, ..., m \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array}$ 

Outputs: 
$$y^{(i)} \in \mathcal{Y}, i=1,\ldots,m$$
  
 $y^{(i)} \in \{0,1\}$  = { hates\_cats, likes\_cats }

Model parameters:
$$\theta \in \mathbb{R}^n$$
 $\theta^\intercal = 0$ -11-0.101-10.51

### TERMINOLOGY

Hypothesis function:  $h_{ heta} \colon \mathbb{R}^n o \mathcal{Y}$ 

E.g., linear classifiers predict outputs using:

$$h_{\theta}(x) = \theta^T x = \sum_{j=1}^n \theta_j \cdot x_j$$

#### Loss function: $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$

- Measures difference between a prediction and the true output
- E.g., squared loss:  $\ell(\hat{y},y)=(\hat{y}\ -y)^2$
- E.g., hinge loss:  $\ell(y) = \max(0, 1 t \cdot y)$

Output  $t = \{-1, +1\}$  based on -1 or +1 class label

Classifier score *y* 

## THE CANONICAL MACHINE LEARNING PROBLEM

# At the end of the day, we want to learn a hypothesis function that predicts the actual outputs well.



## HOW DO I MACHINE LEARN?

#### 1. What is the hypothesis function?

Domain knowledge and EDA can help here.

#### 2. What is the loss function?

- We've discussed two already: squared and absolute.
- 3. How do we solve the optimization problem?
  - (We'll cover gradient descent and stochastic gradient descent in class, but if you are interested, take CMSC422!)



First GIS result for "optimization"

### **ASIDE: LOSS FUNCTIONS**

## QUICK ASIDE ABOUT LOSS FUNCTIONS

#### Say we're back to classifying documents into:

- hates\_cats, translated to label y = -1
- likes\_cats, translated to label y = +1

#### We want some parameter vector $\boldsymbol{\theta}$ such that:

- $\psi_{xy} > 0$  if the feature vector x is of class likes\_cat; (y = +1)
- $\psi_{xy} < 0$  if x's label is y = -1

We want a hyperplane that separates positive examples from negative examples.

Why not use 0/1 loss; that is, the number of wrong answers?

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathbf{1} \left[ y^{(i)} \cdot \langle \theta, x^{(i)} \rangle \le 0 \right]$$

## MINIMIZING 0/1 LOSS IN A SINGLE DIMENSION



Each time we change  $\theta$  such that the example is right (wrong) the loss will increase (decrease)

## MINIMIZING 0/1 LOSS OVER ALL 0

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathbf{1} \left[ y^{(i)} \cdot \langle \theta, x^{(i)} \rangle \le 0 \right]$$

#### This is NP-hard.

- Small changes in any θ can have large changes in the loss (the change isn't continuous)
- There can be many local minima
- At any give point, we don't have much information to direct us towards any minima

#### Maybe we should consider other loss functions.

### **DESIRABLE PROPERTIES**



- Continuous so we get a local indication of the direction of minimization
- Only one (i.e., global) minimum

## **CONVEX FUNCTIONS**

"A function is convex if the line segment between any two points on its graph lies above it."

Formally, given function *f* and two points x, y:

 $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \quad \forall \lambda \in [0, 1]$ 



## SURROGATE LOSS FUNCTIONS

For many applications, we really would like to minimize the 0/1 loss

A surrogate loss function is a loss function that provides an upper bound on the actual loss function (in this case, 0/1)

We'd like to identify **convex** surrogate loss functions to make them easier to minimize

Key to a loss function is how it scores the difference between the actual label y and the predicted label y'

## SURROGATE LOSS FUNCTIONS

0/1 loss: 
$$\,\ell(\hat{y},y)=\mathbf{1}\,[y\hat{y}\leq 0]\,$$

- Hinge:  $\ell(\hat{y}, y) = \max(0, 1 - y\hat{y})$ 

- Exponential: 
$$\ell(\hat{y},y)=e^{-y\hat{y}}$$

• Squared: 
$$\ell(\hat{y},y)=(y-\hat{y})^2$$

#### **SURROGATE LOSS FUNCTIONS**

0/1 loss:

Hinge:

Exponential:

Squared loss:

$$\begin{split} \ell(\hat{y}, y) &= \mathbf{1} \left[ y \hat{y} \leq 0 \right] \\ \ell(\hat{y}, y) &= \max(0, 1 - y \hat{y}) \\ \ell(\hat{y}, y) &= e^{-y \hat{y}} \\ \ell(\hat{y}, y) &= (y - \hat{y})^2 \end{split}$$



## **SOME ML ALGORITHMS**

| Name                            | Hypothesis<br>Function     | Loss Function                    | Optimization<br>Approach        |
|---------------------------------|----------------------------|----------------------------------|---------------------------------|
| Least squares                   | Linear                     | Squared                          | Analytical or GD                |
| Linear regression               | Linear                     | Squared                          | Analytical or GD                |
| Support Vector<br>Machine (SVM) | Linear, Kernel             | Hinge                            | Analytical or GD                |
| Perceptron                      | Linear                     | Perceptron<br>criterion (~Hinge) | Perceptron<br>algorithm, others |
| Neural Networks                 | Composed<br>nonlinear      | Squared, Hinge                   | SGD                             |
| Decision Trees                  | Hierarchical<br>halfplanes | Many                             | Greedy                          |
| Naïve Bayes                     | Linear                     | Joint probability                | #SAT                            |

Follow the white rabbit: https://en.wikipedia.org/wiki/List\_of\_machine\_learning\_concepts



## **RECALL: LINEAR REGRESSION**



## LINEAR REGRESSION AS MACHINE LEARNING

Let's consider linear regression that minimizes the sum of squared error, i.e., least squares ...

- - Linear hypothesis function  $h_{ heta}(x)= heta^T x$
- - Squared error loss  $\ell(\hat{y},y)=rac{1}{2}(\hat{y}-y)^2$
- 3. Optimization problem: ???????

$$\text{minimize}_{\theta} \quad \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)})^2$$

## LINEAR REGRESSION AS MACHINE LEARNING



**Rewrite optimization problem:** 

$$\text{minimize}_{\theta} \ \frac{1}{2} \| X \theta - y \|_2^2$$

\*Recall: 
$$||x||_2^2 = z^T z = \sum_i z_i^2$$

### GRADIENTS

In Lecture 11, we showed that the mean is the point that minimizes the residual sum of squares:

- Solved minimization by finding point where derivative is zero
- (Convex functions like RSS  $\rightarrow$  single global minimum.)

The gradient is the multivariate generalization of a derivative.

For a function  $f: \mathbb{R}^n \to \mathbb{R}$ , the gradient is a vector of all *n* partial derivatives:  $\Box \partial f(\theta) \neg$ 

$$\nabla_{\theta} f(\theta) = \begin{bmatrix} \frac{\partial f(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial f(\theta)}{\partial \theta_n} \end{bmatrix} \in \mathbb{R}^n$$

#### **GRADIENTS**



29

## GRADIENTS

Minimizing a multivariate function involves finding a point where the gradient is zero:

$$\nabla_{\theta} f(\theta) = 0$$
 (the vector of zeros)

Points where the gradient is zero are local minima

• If the function is convex, also a global minimum

Let's solve the least squares problem!

We'll use the multivariate generalizations of some concepts from MATH141/142 ...

- Chain rule:  $\nabla_{\theta}f(X\theta) = X^T \nabla_{X\theta}f(X\theta)$
- Gradient of squared  $\ell^2$  norm:  $abla_{ heta} \| heta z \|_2^2 = 2( heta z)$

### **LEAST SQUARES**

**Recall the least squares optimization problem:** 

$$\text{minimize}_{\theta} \ \frac{1}{2} \| X \theta - y \|_2^2$$

What is the gradient of the optimization objective ????????

$$\nabla_{\theta} \frac{1}{2} \| X \theta - y \|_2^2 =$$

Chain rule:  $\nabla_{\theta} f(X\theta) = X^T \nabla_{X\theta} f(X\theta)$ 

$$X^T \boldsymbol{\nabla}_{X \boldsymbol{\theta}} \frac{1}{2} \| X \boldsymbol{\theta} - y \|_2^2 =$$

Gradient of norm:  $\nabla_{\theta} \| \theta - z \|_2^2 = 2(\theta - z)$ 

$$\nabla_{\theta} \frac{1}{2} \| X\theta - y \|_2^2 = X^T (X\theta - y)$$

#### **LEAST SQUARES**

Recall: points where the gradient equals zero are minima.

$$\nabla_{\theta} \frac{1}{2} \| X\theta - y \|_2^2 = X^T (X\theta - y)$$

$$X^{T}(X\theta - y) = 0$$
  

$$X^{T}X\theta - X^{T}y = 0 \Rightarrow X^{T}X\theta = X^{T}y$$
  

$$(X^{T}X)^{-1}X^{T}X\theta = (X^{T}X)^{-1}X^{T}y$$
  

$$\theta = (X^{T}X)^{-1}X^{T}y$$

## **ML IN PYTHON**



Python has tons of hooks into a variety of machine learning libraries. (Part of why this course is taught in Python!)

Scikit-learn is the most well-known library:

- Classification (SVN, K-NN, Random Forests, ...)
- Regression (SVR, Ridge, Lasso, ...)
- Clustering (k-Means, spectral, mean-shift, ...)
- Dimensionality reduction (PCA, matrix factorization, ...)
- Model selection (grid search, cross validation, ...)
- Preprocessing (cleaning, EDA, ...)

Built on the NumPy stack; plays well with Matplotlib.

## **LEAST SQUARES IN PYTHON**

You don't need Scikit-learn for OLS ...

$$\theta = (X^T X)^{-1} X^T y$$

# Analytic solution to OLS using Numpy
params = np.linalg.solve(X.T.dot(X), X.T.dot(y))

#### But let's say you did want to use it.

from sklearn import linear\_model

```
X = [[0,0], [1,1], [2,2]]
Y = [0, 1, 2]
```

# Solve OLS using Scikit-Learn
reg = linear\_model.LinearRegression()
reg.fit(X, Y)
reg.coef\_

#### array([ 0.5, 0.5])

#### NEXT CLASSES: (STOCHASTIC) GRADIENT DESCENT



## TODAY: GRADIENT DESCENT

#### We used the gradient as a condition for optimality

It also gives the local direction of steepest increase for a function:



Image from Zico Kolter

## **GRADIENT DESCENT**

Algorithm for any\* hypothesis function  $h_{ heta} \colon \mathbb{R}^n o \mathcal{Y}$  , loss function  $\ell \colon \mathcal{Y} imes \mathcal{Y} o \mathbb{R}_+$ , step size lpha :

Initialize the parameter vector:

•  $\theta \leftarrow 0$ 

Repeat until satisfied (e.g., exact or approximate convergence):

- Compute gradient:
- Update parameters:  $heta \leftarrow heta lpha \cdot g$ •

$$\begin{array}{c} g \leftarrow \sum_{i=1}^m \nabla_\theta \ell(h_\theta(x^{(i)}), y^{(i)}) \\ 0 \leftarrow 0 \end{array}$$



### EXAMPLE

- Function:  $f(x,y) = x^2 + 2y^2$ Gradient: ?????????  $\nabla f(x,y) = \begin{bmatrix} 2x \\ 4y \end{bmatrix}$
- Let's take a gradient step from (-2, +1):

$$\nabla f(-2,1) = \left[ \begin{array}{c} 4\\ 2 \end{array} \right]$$

Step in the direction (-4, -2), scaled by step size

Repeat until no movement



## GRADIENT DESCENT FOR OLS

Algorithm for linear hypothesis function and squared error loss function (combined to  $1/2 ||X\theta - y||_2^2$ , like before):

Initialize the parameter vector:

•  $\theta \leftarrow 0$ 

**Repeat until satisfied:** 

- Compute gradient:
- Update parameters:  $heta \leftarrow heta lpha \cdot g$

$$\begin{array}{c} g \leftarrow X^T (X\theta - y) \\ \theta \leftarrow \theta - \alpha \cdot a \end{array}$$

## GRADIENT DESCENT IN PURE(-ISH) PYTHON



```
for i in range(T):
    # loss for current parameter vector theta
    f[i] = 0.5*np.linalg.norm(X.dot(theta) - y)**2
    # compute steepest ascent at f(theta)
    g = X.T.dot(X.dot(theta) - y)
    # step down the gradient
    theta = theta - alpha*g
return theta, f
```

Implicitly using squared loss and linear hypothesis function above; drop in your favorite gradient for kicks!

### **PLOTTING LOSS OVER TIME**



Why ???????

Image from Zico Kolter

す

## **ITERATIVE VS ANALYTIC SOLUTIONS**

But we already had an analytic solution! What gives?

Recall: last class we discuss 0/1 loss, and using convex surrogate loss functions for tractability

One such function, the absolute error loss function, leads to:

$$\begin{array}{l} \text{minimize}_{\theta} \sum_{i=1}^{m} \left| \theta^{T} x^{(i)} - y^{(i)} \right| \equiv \text{minimize}_{\theta} \| X \theta - y \|_{1} \\ \\ \text{Problems ???????} \end{array}$$

- Not differentiable! But subgradients?
- No closed form!
- So you must use iterative method



## LEAST ABSOLUTE DEVIATIONS

Can solve this using gradient descent and the gradient:

$$\nabla_{\theta} \; \| X\theta - y \|_1 = X^T \mathrm{sign}(X\theta - y)$$

Simple to change in our Python code:

```
for i in range(T):
    # loss for current parameter vector theta
    f[i] = np.linalg.norm(X.dot(theta) - y, 1)
    # compute steepest ascent at f(theta)
    g = X.T.dot( np.sign(X.dot(theta) - y) )
    # step down the gradient
    theta = theta - alpha*g
return theta, f
```

