
INTRODUCTION TO
DATA SCIENCE
JOHN P DICKERSON

Lecture #24 – 11/19/2018

CMSC320
Mondays & Wednesdays
2:00pm – 3:15pm

TODAY’S LECTURE

Data
collection

Data
processing

Exploratory
analysis

&
Data viz

Analysis,
hypothesis
testing, &

ML

Insight &
Policy

Decision

2

TODAY’S LECTURE
More nonlinear classification/regression methods
• Decision trees & random forests in Scikit-Learn

• K-Nearest Neighbors (KNN)

• Support Vector Machines (SVMs)

Thanks to: Hector Corrada Bravo (UMD), Panagiotis Tsaparas
(U of I), Oliver Schulte (SFU)

3

DECISION TREES IN SCIKIT

Trains a decision tree using default hyperparameters (attribute
chosen to split on either Gini or entropy, no max depth, etc)

4

from sklearn.datasets import load_iris
from sklearn import tree

Load a common dataset, fit a decision tree to it
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

Predict most likely class
clf.predict([[2., 2.]])

Predict PDF over classes (%training samples in leaf)
clf.predict_proba([[2., 2.]])

VISUALIZING A DECISION TREE

5

from IPython.display import Image
dot_data = tree.export_graphviz(clf,

out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())

RANDOM FORESTS
Decision trees are very interpretable, but may be brittle to
changes in the training data, as well as noise
Random forests are an ensemble method that:
• Resamples the training data;

• Builds many decision trees; and

• Averages predictions of trees to classify.
This is done through bagging and random feature selection

6

BAGGING
Bagging: Bootstrap aggregation

Resampling a training set of size n via the bootstrap:

• Sample with replacement n elements

General scheme for random forests:

1. Create B bootstrap samples, {Z1, Z2, …, ZB}

2. Build B decision trees, {T1, T2, …, TB}, from {Z1, Z2, …, ZB}

Classification/Regression:

1. Each tree Tj predicts class/value yj

2. Return average 1/B Σj={1,...,B} yj for regression,
or majority vote for classification

7

8

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
3 8.1 cat

Original training
dataset (Z):

obs_id ft_1 ft_2
3 8.1 cat
2 34.5 dog
3 8.1 cat

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
1 12.2 puppy

obs_id ft_1 ft_2
1 12.2 puppy
1 12.2 puppy
3 8.1 cat

Z1 Z2
ZB

B Bootstrap
samples Zj

Aggregate/Vote

T1 T2 TBTj

Class estimate or predicted value

RANDOM ATTRIBUTE
SELECTION
We get some randomness via bootstrapping
• We like this! Randomness increases the bias of the forest

slightly at a huge decrease in variance (due to averaging)

We can further reduce correlation between trees by:
1. For each tree, at every split point …
2. … choose a random subset of attributes …
3. … then split on the “best” (entropy, Gini) within only that

subset

9

RANDOM FORESTS IN
SCIKIT-LEARN

Can we get even more random?!
Extremely randomized trees (ExtraTreesClassifier)
do bagging, random attribute selection, but also:
1. At each split point, choose random splits
2. Pick the best of those random splits
Similar bias/variance performance to RFs, but can
be faster computationally

10

from sklearn.ensemble import RandomForestClassifier

Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)

11K-NEAREST NEIGHBORS

NEAREST NEIGHBOR
CLASSIFIERS
Basic idea:
• If it walks like a duck, quacks like a duck, then it’s probably a

duck

Training
Records

Test
Record

Compute
Distance

Choose k of the
“nearest” records

12

NEAREST-NEIGHBOR
CLASSIFIERS

13

● Requires three things
– The set of stored records
– Distance Metric to compute

distance between records
– The value of k, the number of

nearest neighbors to retrieve

● To classify an unknown record:
– Compute distance to other

training records
– Identify k nearest neighbors
– Use class labels of nearest

neighbors to determine the
class label of unknown record
(e.g., by taking majority vote)

Unknown record

DEFINITION OF
NEAREST NEIGHBOR

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distances to x

14

1-NEAREST NEIGHBOR
Voronoi Diagram defines the classification boundary

The area takes the
class of the green
point

15

NEAREST NEIGHBOR
CLASSIFICATION
Compute distance between two points:
• Euclidean distance

Determine the class from nearest neighbor list
• Take the majority vote of class labels among the k-nearest

neighbors

• Weight the vote according to distance

• E.g., weight factor w = 1/d2

å -=
i ii

qpqpd 2)(),(

16

NEAREST NEIGHBOR
CLASSIFICATION…
Choosing the value of k:

• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points
from other classes

X

17

NEAREST NEIGHBOR
CLASSIFICATION…
Scaling issues
• Attributes may have to be scaled to prevent distance

measures from being dominated by one of the attributes
• Example:

• height of a person may vary from 1.5m to 1.8m
• weight of a person may vary from 90lb to 300lb
• income of a person may vary from $10K to $1M

Standardize variables, like in Mini-Project #2.

18

NEAREST NEIGHBOR
CLASSIFICATION…
Problem with Euclidean measure:
• High dimensional data

• The curse of dimensionality – data becomes sparse relative to the
total volume of the space, distance metrics “lose meaning”

• Can produce counter-intuitive results

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
vs

d = 1.4142 d = 1.4142

Solution: Normalize the vectors to unit length

19

NEAREST NEIGHBOR
CLASSIFICATION…
k-NN classifiers are lazy learners
• It does not build models explicitly

• Unlike eager learners such as decision tree induction and rule-
based systems

Classifying unknown records are relatively expensive
• Naïve algorithm: O(n)

• Need for structures to retrieve nearest neighbors fast

• The Nearest Neighbor Search problem
• CMSC420 covers spatial data structures extensively

20

NEAREST NEIGHBOR
SEARCH
Two-dimensional kd-trees:
• A data structure for answering nearest neighbor queries in R2

kd-tree construction algorithm
• Select the x or y dimension (alternating between the two)
• Partition the space into two with a line passing from the

median point

• Repeat recursively in the two partitions as long as there are
enough points

• Can quickly query the tree for nearest neighbors by finding an
incumbent best and pruning large chunks of the tree away

21

K-NN: ADVANTAGES
Simple technique that is easily implemented
Building model is cheap
Extremely flexible classification scheme
Well suited for:
• Multi-modal classes

• Records with multiple class labels

Can sometimes be the best method
• Michihiro Kuramochi and George Karypis, Gene Classification

using Expression Profiles: A Feasibility Study, International Journal

on Artificial Intelligence Tools. Vol. 14, No. 4, pp. 641-660, 2005

• K nearest neighbor outperformed SVM for protein function

prediction using expression profiles

22

K-NN: DISADVANTAGES
Classifying unknown records are relatively expensive
• Requires distance computation of k-nearest neighbors

• Computationally intensive, especially when the size of the
training set grows

Accuracy can be severely degraded by the presence of:
• Noisy or irrelevant features
• High-dimensional space

• Choosing the wrong distance metric

• Choosing the wrong k

23

KNN CLASSIFICATION
IN SCIKIT-LEARN

24

from sklearn import neighbors, datasets

Load a common dataset, fit a 15-NN classifier to it
iris = datasets.load_iris()
X = iris.data[:, :2] # take the first two features
y = iris.target

clf = neighbors.KNeighborsClassifier(
15, weights=‘uniform’)

clf.fit(X, y)

Uniform
weights

1/d2

weights

LOCAL REGRESSION
Basic Idea: To predict a target value y for data point x, apply
interpolation/regression to the neighborhood of x.
Simplest version: connect the dots.

25

K-NEAREST NEIGHBOR
REGRESSION
Connect the dots uses k =
2, fits a line.
Ideas for k =5.
• Fit a line using linear

regression.

• Predict the average
target value of the k points.

26

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

LOCAL REGRESSION
WITH KERNELS
Spikes in regression prediction come from in-or-out nature of
neighborhood

Instead, weight examples as function of the distance

A homogenous kernel function maps the distance between
two vectors to a number, usually in a nonlinear way.
k(x,x’) = k(distance(x,x’))

Example: The quadratic kernel

27

KERNEL REGRESSION

For each query point xq,
prediction is made as
weighted linear sum:

y(xq) = w � xq.

To find weights, solve the
following regression on the
k-nearest neighbors:

2)()),((argmin* j
j

jjq
w

tdistkw xwxxå •-=
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

29

KNN REGRESSION IN
SCIKIT-LEARN

Also provides a variety of distance metrics, backing
algorithms to find nearest neighbors, weight functions
(down-weight points based on distance), etc.

30

from sklearn.neighbors import KNeighborsRegressor

Basic KNN regression in Scikit (interpolation)
X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]

neigh = KNeighborsRegressor(n_neighbors=2)
neigh.fit(X, y)

print(neigh.predict([[1.5]]))

[0.5]

31

SUPPORT VECTOR MACHINES

SUPPORT VECTOR
MACHINES (SVM)

Find a linear hyperplane (decision boundary) that will separate the data 32

SUPPORT VECTOR
MACHINES

One possible solution

B1

33

SUPPORT VECTOR
MACHINES

Other possible solutions

B2

34

SUPPORT VECTOR MACHINES

Which one is better? B1 or B2? ??????????
How do you define better? ??????????

B1

B2

35

SUPPORT VECTOR MACHINES

Find hyperplane maximizes the margin à B1 is better than B2

B1

B2

b11

b12

b21
b22

margin

36

SUPPORT VECTOR MACHINES
B1

b11

b12

0=+• bxw !!

1-=+• bxw !! 1+=+• bxw !!

î
í
ì

-£+•-
³+•

=
1bxw if1

1bxw if1
)(!!

!!
!xf 2||||

2 Margin
w!

=

37

SUPPORT VECTOR
MACHINES
We want to maximize:

Which is equivalent to minimizing:

But subject to the following constraints:

This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)

2||||
2 Margin
w!

=

2
||||)(
2wwL

!
=

! " #$ + & ≥ 1 if)$ = 1
! " #$ + & ≤ −1 if)$ = −1

38

SUPPORT VECTOR
MACHINES
What if the problem is not linearly separable?

!"
#

Apply some
sort of penalty

39

SUPPORT VECTOR
MACHINES
What if the problem is not linearly separable?
• Introduce slack variables

• Need to minimize:

• Subject to:

÷
ø

ö
ç
è

æ
+= å

=

N

i

k
iCwwL

1

2

2
||||)(x
!

! " #$ + & ≥ 1 − *$ if +$ = 1
! " #$ + & ≤ −1 + *$ if +$ = −1

40

NONLINEAR SUPPORT
VECTOR MACHINES
What if the decision boundary is not linear?

41

NONLINEAR SUPPORT
VECTOR MACHINES
Transform data into higher dimensional space

42

SVMS IN SCIKIT-LEARN

Lots of defaults used for hyperparameters – can use cross
validation to search for good ones

43

from sklearn import svm

Fit a default SVM classifier to fake data
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto',
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001,
verbose=False)

MODEL SELECTION IN
SCIKIT-LEARN

44

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

... Load some raw data into X and y ...
Split the dataset in two equal parts
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=0.5, random_state=0)

Pick values of hyperparameters you want to consider
tuned_parameters = [{'kernel': ['rbf'],

'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},

{'kernel': ['linear'],
'C': [1, 10, 100, 1000]}

]

MODEL SELECTION IN
SCIKIT-LEARN

45

Perform a complete grid search + cross validation
for each of the hyperparameter vectors
clf = GridSearchCV(SVC(C=1),

tuned_parameters,
cv=5,
scoring=‘precision’)

clf.fit(X_train, y_train)

Now that you’ve selected good hyperparameters via CV,
and trained a model on your training data, get an
estimate of the “true error” on your test set
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))

