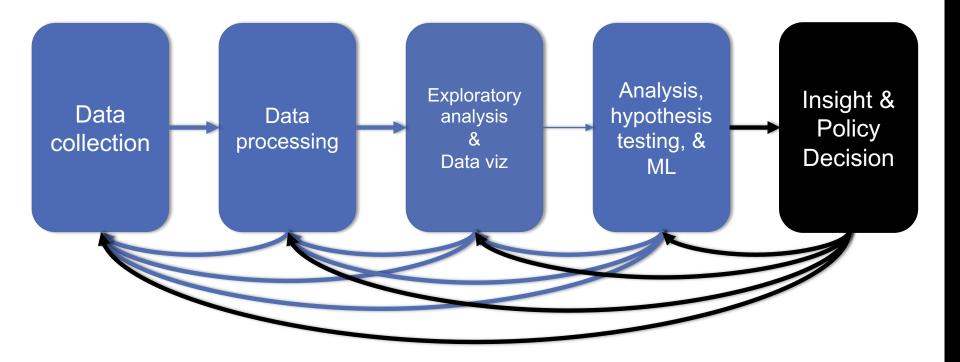
INTRODUCTION TO DATA SCIENCE

JOHN P DICKERSON

Lecture #24 - 11/19/2018

CMSC320 Mondays & Wednesdays 2:00pm – 3:15pm

TODAY'S LECTURE

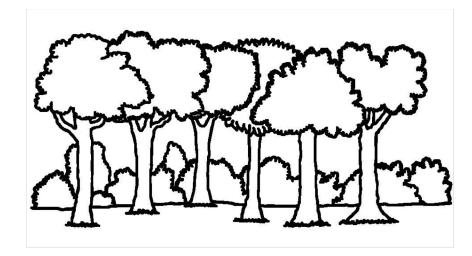


TODAY'S LECTURE

More nonlinear classification/regression methods

- Decision trees & random forests in Scikit-Learn
- K-Nearest Neighbors (KNN)
- Support Vector Machines (SVMs)

Thanks to: Hector Corrada Bravo (UMD), Panagiotis Tsaparas (U of I), Oliver Schulte (SFU)



DECISION TREES IN SCIKIT

from sklearn.datasets import load_iris
from sklearn import tree

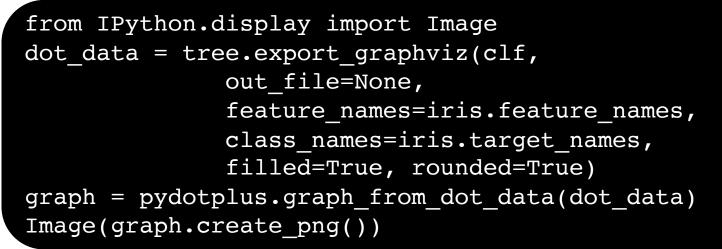
```
# Load a common dataset, fit a decision tree to it
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
```

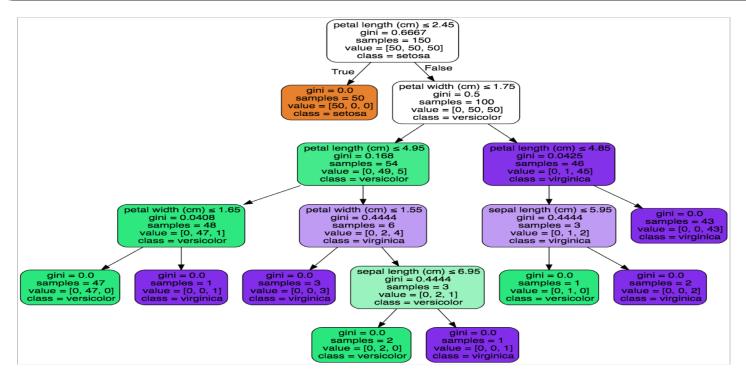
Trains a decision tree using default hyperparameters (attribute chosen to split on either Gini or entropy, no max depth, etc)

```
# Predict most likely class
clf.predict([[2., 2.]])
```

Predict PDF over classes (%training samples in leaf)
clf.predict_proba([[2., 2.]])

VISUALIZING A DECISION TREE





RANDOM FORESTS

Decision trees are very interpretable, but may be brittle to changes in the training data, as well as noise

Random forests are an ensemble method that:

- Resamples the training data;
- Builds many decision trees; and
- Averages predictions of trees to classify.

This is done through bagging and random feature selection

BAGGING

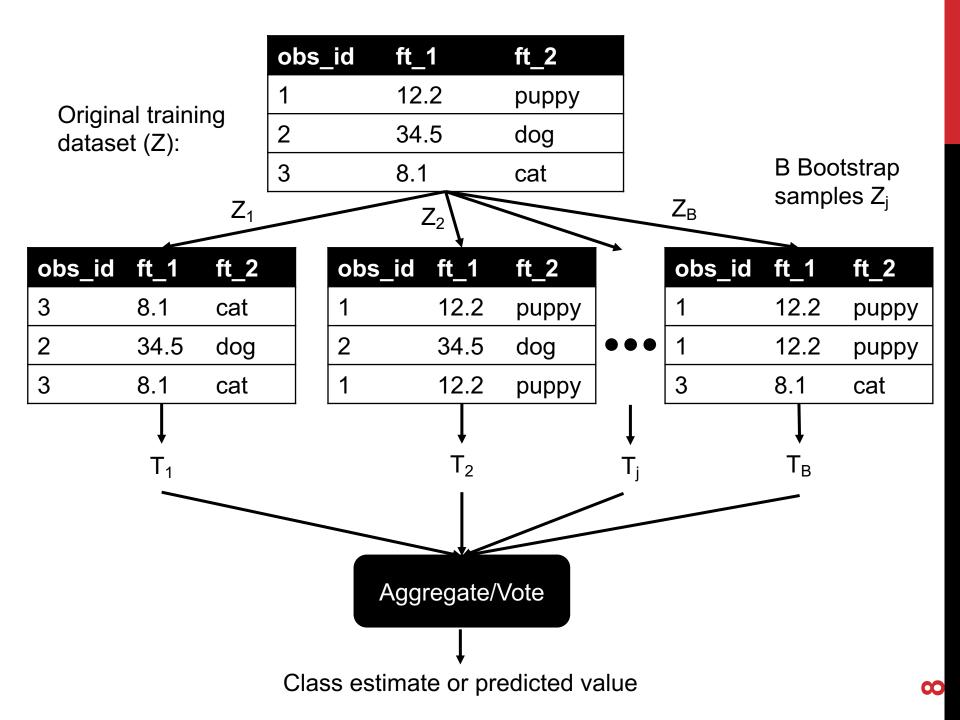
Bagging: Bootstrap aggregation

Resampling a training set of size n via the **bootstrap**:

• Sample with replacement n elements

General scheme for random forests:

- 1. Create B bootstrap samples, $\{Z_1, Z_2, ..., Z_B\}$
- 2. Build B decision trees, $\{T_1, T_2, ..., T_B\}$, from $\{Z_1, Z_2, ..., Z_B\}$ Classification/Regression:
- 1. Each tree T_j predicts class/value y_j
- 2. Return average 1/B $\Sigma_{j=\{1,...,B\}}$ y_j for regression, or majority vote for classification



RANDOM ATTRIBUTE SELECTION

We get some randomness via bootstrapping

• We like this! Randomness increases the bias of the forest slightly at a huge decrease in variance (due to averaging)

We can further reduce correlation between trees by:

- 1. For each tree, at every split point ...
- 2. ... choose a random subset of attributes ...
- 3. ... then split on the "best" (entropy, Gini) within only that subset

RANDOM FORESTS IN SCIKIT-LEARN

from sklearn.ensemble import RandomForestClassifier

```
# Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)
```

Can we get even more random?!

Extremely randomized trees (ExtraTreesClassifier) do bagging, random attribute selection, but also:

- 1. At each split point, choose random splits
- 2. Pick the best of those random splits

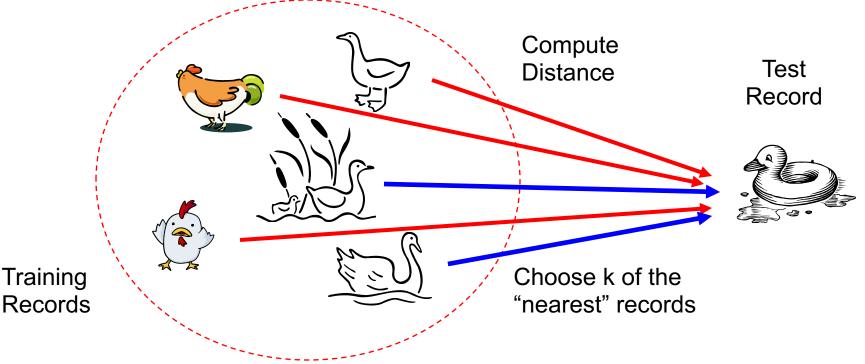
Similar bias/variance performance to RFs, but can be faster computationally

K-NEAREST NEIGHBORS

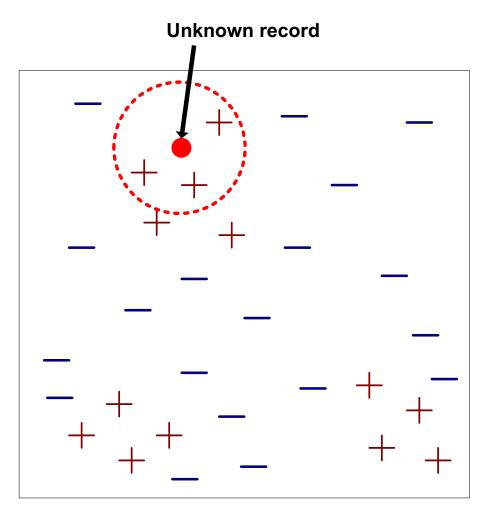
NEAREST NEIGHBOR CLASSIFIERS

Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

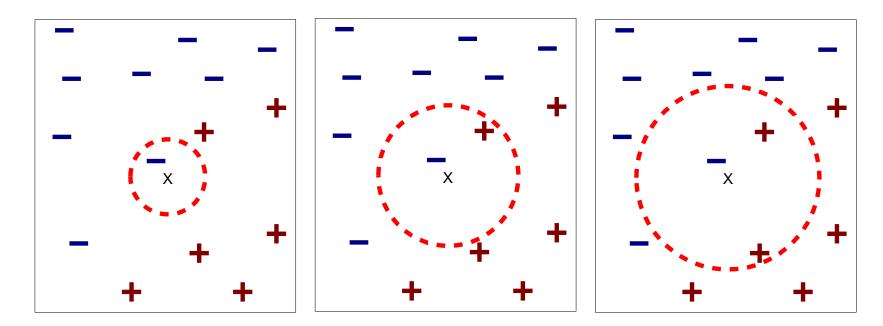


NEAREST-NEIGHBOR CLASSIFIERS



- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

DEFINITION OF NEAREST NEIGHBOR



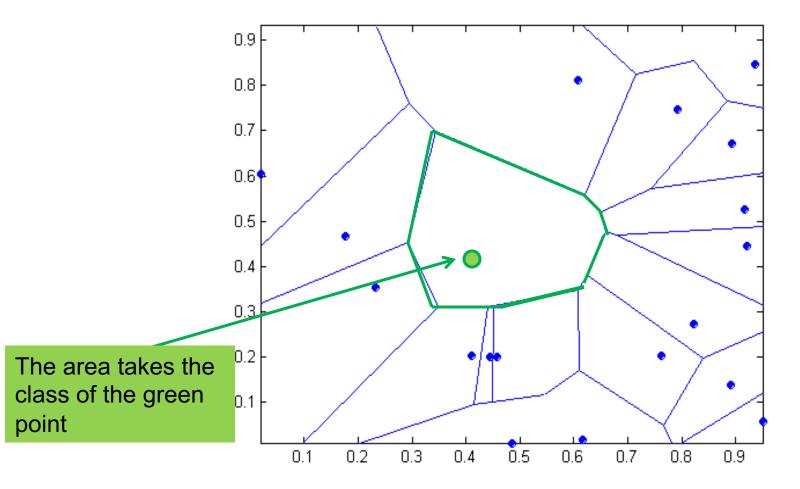
(a) 1-nearest neighbor

(b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distances to x

1-NEAREST NEIGHBOR

Voronoi Diagram defines the classification boundary



Compute distance between two points:

• Euclidean distance

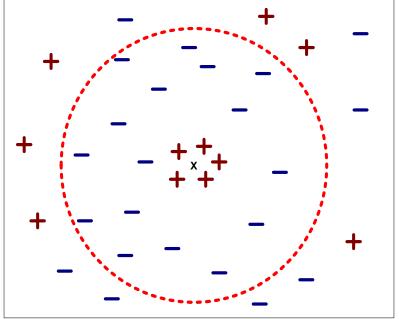
$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

Determine the class from nearest neighbor list

- Take the majority vote of class labels among the k-nearest neighbors
- Weight the vote according to distance
 - E.g., weight factor $w = 1/d^2$

Choosing the value of k:

- If k is too small, sensitive to noise points
- If k is too large, neighborhood may include points from other classes



Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Standardize variables, like in Mini-Project #2.

Problem with Euclidean measure:

- High dimensional data
 - The curse of dimensionality data becomes sparse relative to the total volume of the space, distance metrics "lose meaning"
- Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

k-NN classifiers are lazy learners

- It does not build models explicitly
- Unlike eager learners such as decision tree induction and rulebased systems

Classifying unknown records are relatively expensive

- Naïve algorithm: O(n)
- Need for structures to retrieve nearest neighbors fast
 - The Nearest Neighbor Search problem
- CMSC420 covers spatial data structures extensively

NEAREST NEIGHBOR SEARCH

Two-dimensional kd-trees:

• A data structure for answering nearest neighbor queries in R²

kd-tree construction algorithm

- Select the x or y dimension (alternating between the two)
- Partition the space into two with a line passing from the median point
- Repeat recursively in the two partitions as long as there are enough points
- Can quickly query the tree for nearest neighbors by finding an incumbent best and pruning large chunks of the tree away

K-NN: ADVANTAGES

Simple technique that is easily implemented

Building model is cheap

Extremely flexible classification scheme

Well suited for:

- Multi-modal classes
- Records with multiple class labels

Can sometimes be the best method

- Michihiro Kuramochi and George Karypis, Gene Classification using Expression Profiles: A Feasibility Study, International Journal on Artificial Intelligence Tools. Vol. 14, No. 4, pp. 641-660, 2005
- K nearest neighbor outperformed SVM for protein function prediction using expression profiles

K-NN: DISADVANTAGES

Classifying unknown records are relatively expensive

- Requires distance computation of k-nearest neighbors
- Computationally intensive, especially when the size of the training set grows

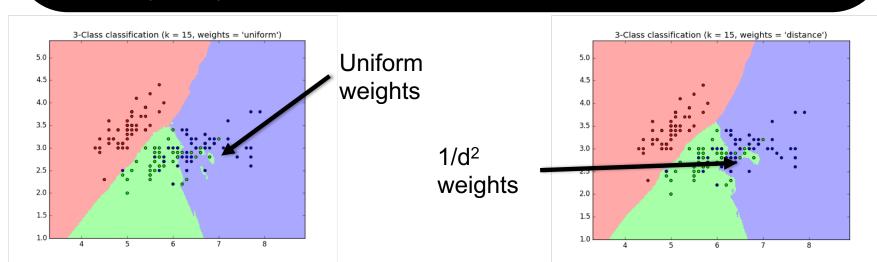
Accuracy can be severely degraded by the presence of:

- Noisy or irrelevant features
- High-dimensional space
- Choosing the wrong distance metric
- Choosing the wrong *k*

KNN CLASSIFICATION IN SCIKIT-LEARN

from sklearn import neighbors, datasets

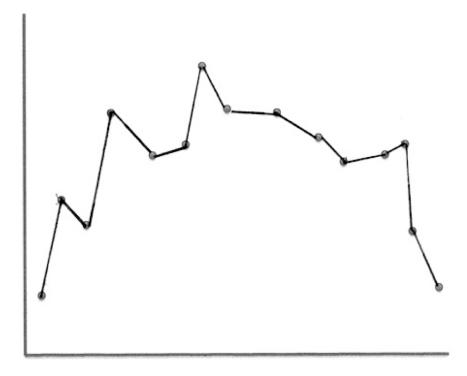
Load a common dataset, fit a 15-NN classifier to it iris = datasets.load_iris() X = iris.data[:, :2] # take the first two features y = iris.target



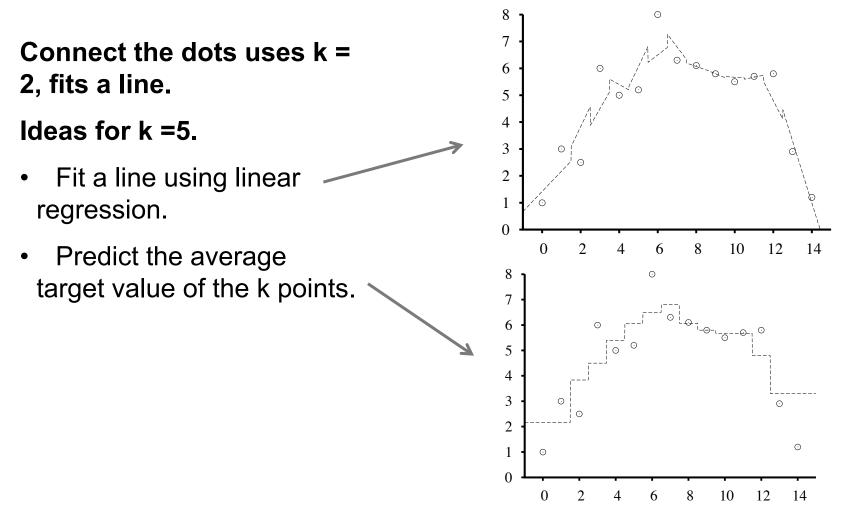
LOCAL REGRESSION

Basic Idea: To predict a target value y for data point x, apply interpolation/regression to the neighborhood of x.

Simplest version: connect the dots.



K-NEAREST NEIGHBOR REGRESSION



LOCAL REGRESSION WITH KERNELS

Spikes in regression prediction come from in-or-out nature of neighborhood

Instead, weight examples as function of the distance

A homogenous kernel function maps the distance between two vectors to a number, usually in a nonlinear way. k(x,x') = k(distance(x,x'))

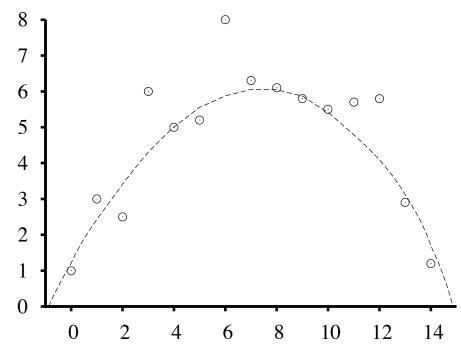
Example: The quadratic kernel

KERNEL REGRESSION

For each query point x_q , prediction is made as weighted linear sum: $y(x_q) = w \cdot x_q$.

To find weights, solve the following regression on the k-nearest neighbors:

$$w^* = \operatorname{argmin}_{w} \sum_{j} k(\operatorname{dist}(\mathbf{x}_q, \mathbf{x}_j))(t_j - \mathbf{w} \bullet \mathbf{x}_j)^2$$



KNN REGRESSION IN SCIKIT-LEARN

from sklearn.neighbors import KNeighborsRegressor

```
# Basic KNN regression in Scikit (interpolation)
X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
```

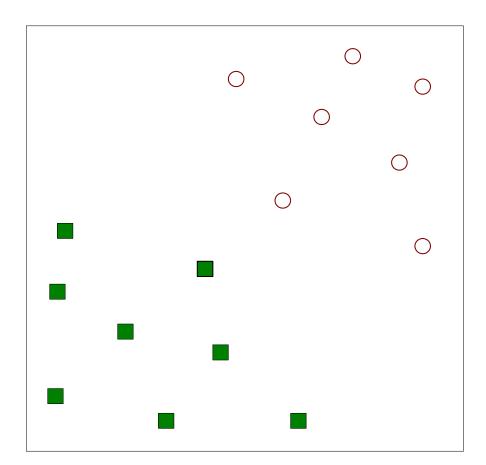
neigh = KNeighborsRegressor(n_neighbors=2)
neigh.fit(X, y)

print(neigh.predict([[1.5]]))

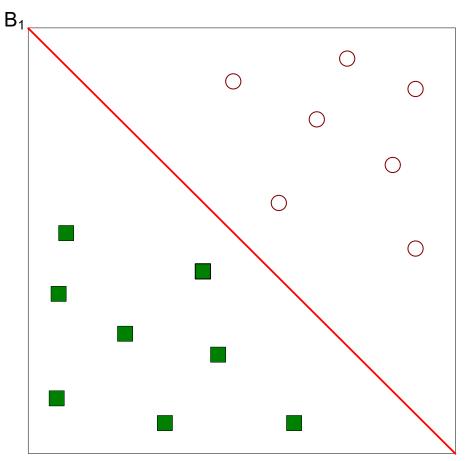
[0.5]

Also provides a variety of distance metrics, backing algorithms to find nearest neighbors, weight functions (down-weight points based on distance), etc.

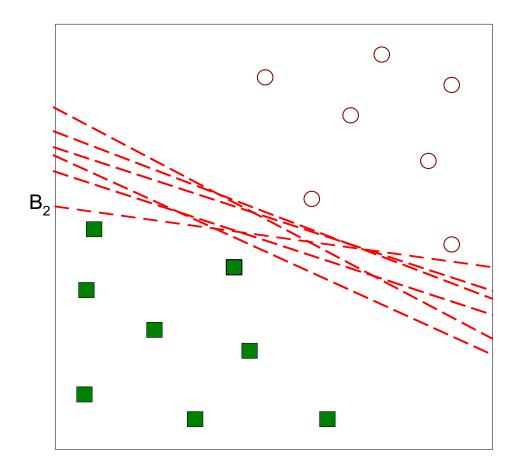
SUPPORT VECTOR MACHINES (SVM)



Find a linear hyperplane (decision boundary) that will separate the data 😒

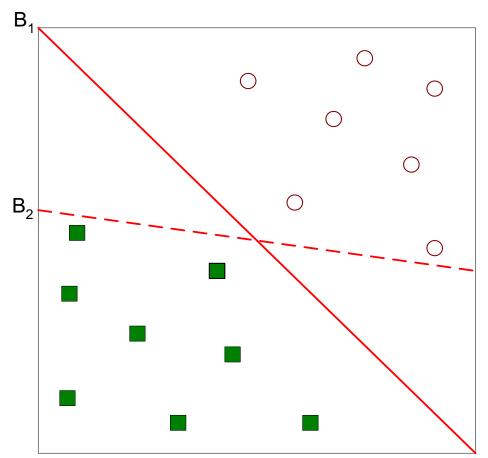


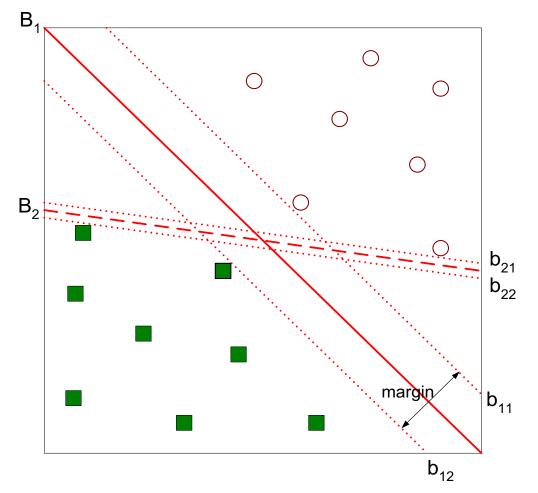
One possible solution



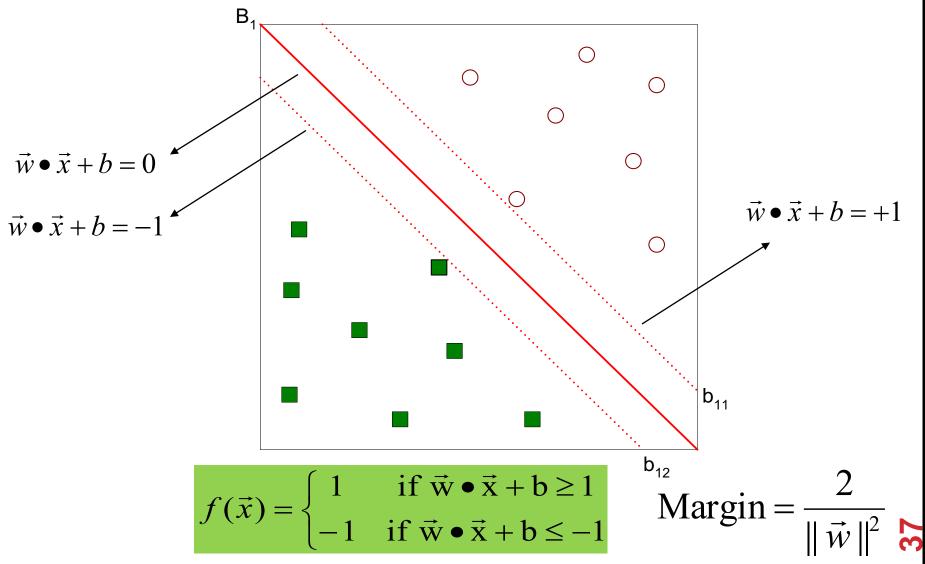
Other possible solutions

34





Find hyperplane maximizes the margin $\rightarrow B_1$ is better than B_2



We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$

Which is equivalent to minimizing:

$$\vec{w} \parallel^2 L(w) = \frac{\parallel \vec{w} \parallel^2}{2}$$

But subject to the following constraints:

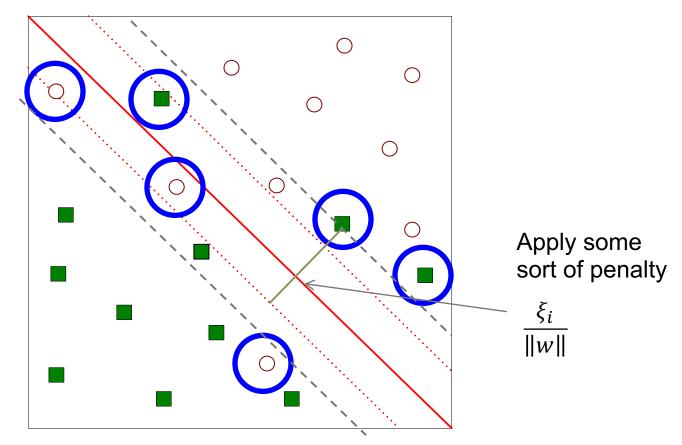
$$\vec{w} \cdot \vec{x_i} + b \ge 1 \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x_i} + b \le -1 \text{ if } y_i = -1$$

This is a constrained optimization problem

• Numerical approaches to solve it (e.g., quadratic programming)

What if the problem is not linearly separable?



What if the problem is not linearly separable?

- Introduce slack variables
- Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

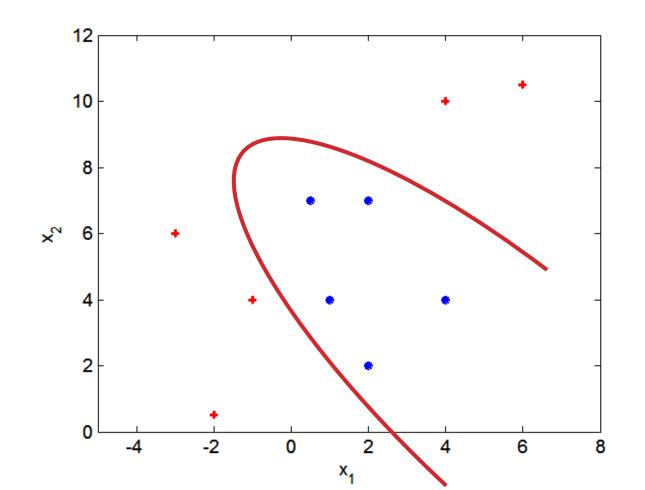
• Subject to:

$$\vec{w} \cdot \vec{x_i} + b \ge 1 - \xi_i \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x_i} + b \le -1 + \xi_i \text{ if } y_i = -1$$

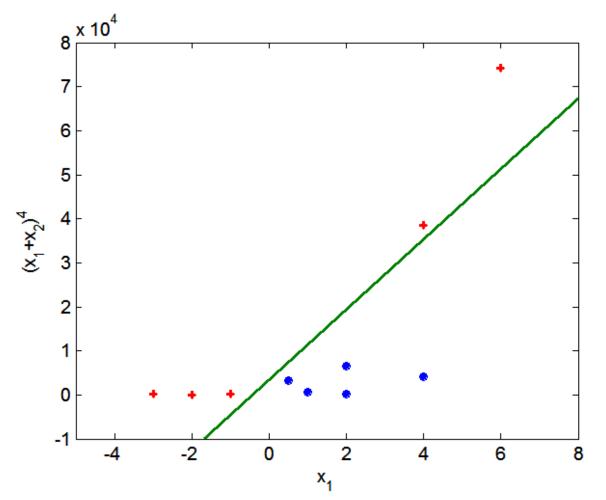
NONLINEAR SUPPORT VECTOR MACHINES

What if the decision boundary is not linear?



NONLINEAR SUPPORT VECTOR MACHINES

Transform data into higher dimensional space



SVMS IN SCIKIT-LEARN

from sklearn import svm

```
# Fit a default SVM classifier to fake data
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)
```

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)

Lots of defaults used for hyperparameters – can use cross validation to search for good ones

MODEL SELECTION IN SCIKIT-LEARN

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

... Load some raw data into X and y ...
Split the dataset in two equal parts
X_train, X_test, y_train, y_test = \
 train_test_split(X, y, test_size=0.5, random_state=0)

MODEL SELECTION IN SCIKIT-LEARN

Now that you've selected good hyperparameters via CV, # and trained a model on your training data, get an # estimate of the "true error" on your test set y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred))