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TODAY’S LECTURE
More nonlinear classification/regression methods
• Decision trees & random forests in Scikit-Learn

• K-Nearest Neighbors (KNN)

• Support Vector Machines (SVMs)

Thanks to: Hector Corrada Bravo (UMD), Panagiotis Tsaparas
(U of I), Oliver Schulte (SFU)
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DECISION TREES IN SCIKIT

Trains a decision tree using default hyperparameters (attribute 
chosen to split on either Gini or entropy, no max depth, etc) 
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from sklearn.datasets import load_iris
from sklearn import tree

# Load a common dataset, fit a decision tree to it
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

# Predict most likely class
clf.predict([[2., 2.]])

# Predict PDF over classes (%training samples in leaf)
clf.predict_proba([[2., 2.]])



VISUALIZING A DECISION TREE
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from IPython.display import Image
dot_data = tree.export_graphviz(clf, 

out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())



RANDOM FORESTS
Decision trees are very interpretable, but may be brittle to 
changes in the training data, as well as noise
Random forests are an ensemble method that:
• Resamples the training data;

• Builds many decision trees; and

• Averages predictions of trees to classify.
This is done through bagging and random feature selection
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BAGGING
Bagging: Bootstrap aggregation

Resampling a training set of size n via the bootstrap:

• Sample with replacement n elements

General scheme for random forests:

1. Create B bootstrap samples, {Z1, Z2, …, ZB}

2. Build B decision trees, {T1, T2, …, TB}, from {Z1, Z2, …, ZB}

Classification/Regression:

1. Each tree Tj predicts class/value yj

2. Return average 1/B Σj={1,...,B} yj for regression, 
or majority vote for classification
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obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
3 8.1 cat

Original training 
dataset (Z):

obs_id ft_1 ft_2
3 8.1 cat
2 34.5 dog
3 8.1 cat

obs_id ft_1 ft_2
1 12.2 puppy
2 34.5 dog
1 12.2 puppy

obs_id ft_1 ft_2
1 12.2 puppy
1 12.2 puppy
3 8.1 cat

Z1 Z2
ZB

B Bootstrap 
samples Zj

Aggregate/Vote

T1 T2 TBTj

Class estimate or predicted value



RANDOM ATTRIBUTE 
SELECTION
We get some randomness via bootstrapping
• We like this!  Randomness increases the bias of the forest 

slightly at a huge decrease in variance (due to averaging)

We can further reduce correlation between trees by:
1. For each tree, at every split point …
2. … choose a random subset of attributes …
3. … then split on the “best” (entropy, Gini) within only that 

subset
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RANDOM FORESTS IN 
SCIKIT-LEARN

Can we get even more random?!
Extremely randomized trees (ExtraTreesClassifier) 
do bagging, random attribute selection, but also:
1. At each split point, choose random splits
2. Pick the best of those random splits
Similar bias/variance performance to RFs, but can 
be faster computationally
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from sklearn.ensemble import RandomForestClassifier

# Train a random forest of 10 default decision trees
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)



11K-NEAREST NEIGHBORS



NEAREST NEIGHBOR 
CLASSIFIERS
Basic idea:
• If it walks like a duck, quacks like a duck, then it’s probably a 

duck

Training 
Records

Test 
Record

Compute 
Distance

Choose k of the 
“nearest” records
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NEAREST-NEIGHBOR 
CLASSIFIERS
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● Requires three things
– The set of stored records
– Distance Metric to compute 

distance between records
– The value of k, the number of 

nearest neighbors to retrieve

● To classify an unknown record:
– Compute distance to other 

training records
– Identify k nearest neighbors 
– Use class labels of nearest 

neighbors to determine the 
class label of unknown record 
(e.g., by taking majority vote)

Unknown record



DEFINITION OF 
NEAREST NEIGHBOR

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points 
that have the k smallest distances to x
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1-NEAREST NEIGHBOR
Voronoi Diagram defines the classification boundary

The area takes the 
class of the green 
point

15



NEAREST NEIGHBOR 
CLASSIFICATION
Compute distance between two points:
• Euclidean distance 

Determine the class from nearest neighbor list
• Take the majority vote of class labels among the k-nearest 

neighbors

• Weight the vote according to distance

• E.g., weight factor w = 1/d2
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NEAREST NEIGHBOR 
CLASSIFICATION…
Choosing the value of k:

• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points 
from other classes

X
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NEAREST NEIGHBOR 
CLASSIFICATION…
Scaling issues
• Attributes may have to be scaled to prevent distance 

measures from being dominated by one of the attributes
• Example:

• height of a person may vary from 1.5m to 1.8m
• weight of a person may vary from 90lb to 300lb
• income of a person may vary from $10K to $1M

Standardize variables, like in Mini-Project #2.
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NEAREST NEIGHBOR 
CLASSIFICATION…
Problem with Euclidean measure:
• High dimensional data 

• The curse of dimensionality – data becomes sparse relative to the 
total volume of the space, distance metrics “lose meaning”

• Can produce counter-intuitive results

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
vs

d = 1.4142 d = 1.4142

Solution: Normalize the vectors to unit length
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NEAREST NEIGHBOR 
CLASSIFICATION…
k-NN classifiers are lazy learners
• It does not build models explicitly

• Unlike eager learners such as decision tree induction and rule-
based systems

Classifying unknown records are relatively expensive
• Naïve algorithm: O(n)

• Need for structures to retrieve nearest neighbors fast

• The Nearest Neighbor Search problem
• CMSC420 covers spatial data structures extensively
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NEAREST NEIGHBOR 
SEARCH
Two-dimensional kd-trees:
• A data structure for answering nearest neighbor queries in R2

kd-tree construction algorithm
• Select the x or y dimension (alternating between the two)
• Partition the space into two with a line passing from the 

median point

• Repeat recursively in the two partitions as long as there are 
enough points  

• Can quickly query the tree for nearest neighbors by finding an 
incumbent best and pruning large chunks of the tree away
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K-NN: ADVANTAGES
Simple technique that is easily implemented
Building model is cheap
Extremely flexible classification scheme
Well suited for:
• Multi-modal classes

• Records with multiple class labels

Can sometimes be the best method
• Michihiro Kuramochi and George Karypis, Gene Classification 

using Expression Profiles: A Feasibility Study, International Journal 

on Artificial Intelligence Tools. Vol. 14, No. 4, pp. 641-660, 2005

• K nearest neighbor outperformed SVM for protein function 

prediction using expression profiles
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K-NN: DISADVANTAGES
Classifying unknown records are relatively expensive
• Requires distance computation of k-nearest neighbors

• Computationally intensive, especially when the size of the 
training set grows

Accuracy can be severely degraded by the presence of:
• Noisy or irrelevant features
• High-dimensional space

• Choosing the wrong distance metric

• Choosing the wrong k
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KNN CLASSIFICATION 
IN SCIKIT-LEARN

24

from sklearn import neighbors, datasets

# Load a common dataset, fit a 15-NN classifier to it
iris = datasets.load_iris()
X = iris.data[:, :2]  # take the first two features
y = iris.target

clf = neighbors.KNeighborsClassifier(
15, weights=‘uniform’)

clf.fit(X, y)

Uniform 
weights

1/d2 

weights



LOCAL REGRESSION
Basic Idea: To predict a target value y for data point x, apply 
interpolation/regression to the neighborhood of x.
Simplest version: connect the dots.
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K-NEAREST NEIGHBOR 
REGRESSION
Connect the dots uses k = 
2, fits a line.
Ideas for k =5.
• Fit a line using linear 

regression.

• Predict the average 
target value of the k points.
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LOCAL REGRESSION 
WITH KERNELS
Spikes in regression prediction come from in-or-out nature of 
neighborhood

Instead, weight examples as function of the distance

A homogenous kernel function maps the distance between 
two vectors to a number, usually in a nonlinear way.
k(x,x’) = k(distance(x,x’))

Example: The quadratic kernel
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KERNEL REGRESSION

For each query point xq, 
prediction is made as 
weighted linear sum: 

y(xq) = w � xq.

To find weights, solve the 
following regression on the 
k-nearest neighbors:
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KNN REGRESSION IN 
SCIKIT-LEARN

Also provides a variety of distance metrics, backing 
algorithms to find nearest neighbors, weight functions 
(down-weight points based on distance), etc.
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from sklearn.neighbors import KNeighborsRegressor

# Basic KNN regression in Scikit (interpolation)
X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]

neigh = KNeighborsRegressor( n_neighbors=2 )
neigh.fit(X, y)

print(neigh.predict([[1.5]]))

[ 0.5]
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SUPPORT VECTOR MACHINES



SUPPORT VECTOR 
MACHINES (SVM)

Find a linear hyperplane (decision boundary) that will separate the data 32



SUPPORT VECTOR 
MACHINES

One possible solution

B1
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SUPPORT VECTOR 
MACHINES

Other possible solutions

B2

34



SUPPORT VECTOR MACHINES

Which one is better? B1 or B2?    ??????????
How do you define better?     ??????????

B1

B2
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SUPPORT VECTOR MACHINES

Find hyperplane maximizes the margin à B1 is better than B2

B1

B2

b11

b12

b21
b22

margin
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SUPPORT VECTOR MACHINES
B1

b11

b12
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SUPPORT VECTOR 
MACHINES
We want to maximize:

Which is equivalent to minimizing:

But subject to the following constraints:

This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)
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SUPPORT VECTOR 
MACHINES
What if the problem is not linearly separable?

!"
#

Apply some 
sort of penalty

39



SUPPORT VECTOR 
MACHINES
What if the problem is not linearly separable?
• Introduce slack variables

• Need to minimize:

• Subject to: 
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NONLINEAR SUPPORT 
VECTOR MACHINES
What if the decision boundary is not linear?
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NONLINEAR SUPPORT 
VECTOR MACHINES
Transform data into higher dimensional space
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SVMS IN SCIKIT-LEARN

Lots of defaults used for hyperparameters – can use cross 
validation to search for good ones
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from sklearn import svm

# Fit a default SVM classifier to fake data
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y) 

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape=None, degree=3, gamma='auto', 
kernel='rbf', max_iter=-1, probability=False, 
random_state=None, shrinking=True, tol=0.001, 
verbose=False)



MODEL SELECTION IN 
SCIKIT-LEARN
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from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

# ... Load some raw data into X and y ...
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=0.5, random_state=0)

# Pick values of hyperparameters you want to consider
tuned_parameters = [{'kernel': ['rbf'], 

'gamma': [1e-3, 1e-4], 
'C': [1, 10, 100, 1000]}, 

{'kernel': ['linear'], 
'C': [1, 10, 100, 1000]}

]



MODEL SELECTION IN 
SCIKIT-LEARN
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# Perform a complete grid search + cross validation
# for each of the hyperparameter vectors
clf = GridSearchCV(SVC(C=1),

tuned_parameters,
cv=5,
scoring=‘precision’)

clf.fit(X_train, y_train)

# Now that you’ve selected good hyperparameters via CV,
# and trained a model on your training data, get an
# estimate of the “true error” on your test set
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))


