
Artificial Neural Networks



What are they?

Inspired by the Human Brain.

The human brain has about 86 Billion neurons and requires 20% of your 
body’s energy to function. 

These neurons are connected to between 100 Trillion to 1 Quadrillion 
synapses!



What are they?



What are they?

1. Originally developed by Warren McCulloch and Walter 
Pitts[3] (1943)

2. Started off as an unsupervised learning tool. 

1. Had problems with computing time and could not 
compute XOR 

2. Was abandoned in favor of other algorithms

3. Werbos's (1975) backpropagation algorithm

1. Incorporated supervision and solved XOR

2. But were still too slow vs. other algorithms e.g., 
Support Vector Machines

4. Backpropagation was accelerated by GPUs in 2010 and 
shown to be more efficient and cost effective

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts
https://en.wikipedia.org/wiki/Artificial_neural_network#cite_note-3
https://en.wikipedia.org/wiki/Paul_Werbos
https://en.wikipedia.org/wiki/Backpropagation


GPUS
GPUS handle parallel operations much better (thousands of threads per 
core) but are not as quick as CPUs. However, the matrix multiplication 
steps in ANNs can be run in parallel resulting in considerable time + cost 
savings. The best CPUs handle about 50GB/s while the best GPUs handle 
750GB/s memory bandwidth.



Applications

http://news.mit.edu/2017/artificial-intelligence-suggests-recipes-based-
on-food-photos-0720

Image to food to ingredients to recipes. 

http://news.mit.edu/2017/artificial-intelligence-suggests-recipes-based-on-food-photos-0720


Applications

https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-
used-to-discover-eighth-planet-circling-distant-star

Images of light drop compared and new ones found.

https://www.nasa.gov/press-release/artificial-intelligence-nasa-data-used-to-discover-eighth-planet-circling-distant-star


Idea behind them

1. Obtain some structured data (always a good idea ).

2. Use some subset of that data as training

3. Feed each training example through the network

1. Calculate the error for each training example

2. Update the weights for each neuron to minimize the 
error using Gradient Descent (Back Propagation)

3. Feed in the data again until you reach the desired % 
error or trials run out

4. If you reached % error or trials stop and go to the next 
training input

1. Else (Back Propagation)



An example



Forward Propagation

1. Assign random weights to the synapses

2. Feed in the training data

3. Calculate the hidden layers neurons from the 
inputs and the weights using an activation 
function

4. Calculate the output from the hidden layer 
neurons and the output weights

5. Calculate the error from what is expected



Activation Function



Forward propagation



Back propagation

We need to adjust the weights to minimize the error 



Back propagation



Back Propagation



Live Example!
https://teachablemachine.withgoogle.com/

https://teachablemachine.withgoogle.com/


Strike the pose
https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html

https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html


Can a machine play music?
https://magenta.tensorflow.org/demos/performance_rnn/index.html#2|2,0,1,0,1,1,0,1,0,1,0,1|1,1,1,1,1,1,1,1,1,1,1,1|1,1,1,
1,1,1,1,1,1,1,1,1|false

https://magenta.tensorflow.org/demos/performance_rnn/index.html#2|2,0,1,0,1,1,0,1,0,1,0,1|1,1,1,1,1,1,1,1,1,1,1,1|1,1,1,1,1,1,1,1,1,1,1,1|false


Tensor Flow & Keras
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense

# the four different states of the XOR gate
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32")

# the four expected results in the same order
target_data = np.array([[0],[1],[1],[0]], "float32")

#use sequential vs functional since we’re feedforward
model = Sequential()
#Dense is used for single input data 0,1,1,0 for each neuron
model.add(Dense(16, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

#this is the building of the net
model.compile(loss='mean_squared_error',

optimizer='adam',
metrics=['binary_accuracy'])

#now optimize
model.fit(training_data, target_data, nb_epoch=500, verbose=2)

print model.predict(training_data).round()



Derivative of the sigmoid


