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ANNOUNCEMENTS
Please fill out course evaluations!
• https://courseevalum.umd.edu

Last day to fill them out is tomorrow.
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GRADES & FINAL TUTORIALS
Project 4 is being graded as we speak, should be up in the 
next day or two
• Generally, people did very well!

Remember to:
• Submit via ELMS the URL for the GitHub Page for your group’s

final tutorial
• Fill in on the Google Doc your project title, URL, group 

members, and data source(s)
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Markets come in many forms …

… some of which don’t conform to 
conventional notions of markets …

… and some in which money may play little or no role.
– excerpt from Who Gets What – and Why 
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MATCHING MARKETS
In matching problems, prices do not 
do all – or any – of the work
Agents are paired with other (groups 
of) agents, transactions, or contracts
• Workers to firms
• Children to schools
• Residents to hospitals
• Patients to donors
• Advertisements to viewers
• Riders to rideshare drivers
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UNCERTAINTY

• Does a matched edge truly exist?
• How valuable is a match?
• Will a better match arrive in the 

future?
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COMPETITION
Rival matching markets compete over the same agents
• How does this affect global social welfare?
• How to differentiate?
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MATCH CADENCE
How quickly do new edges form?

How frequently does a market 
clear?

Is clearing centralized or 
decentralized?

Can agents reenter the market?
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Use data & optimization –
alongside human domain expertise 

– to learn matching policies

Strong theoretical underpinnings 
provide design guidance & 

runtime guarantees
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THIS TALK
• Four dimensions of matching market design:

• Managing short-term uncertainty
• Balancing equity & efficiency
• Combining human input and optimization
• Incentives & mechanism design

• (Each is supported by my work with local and 
nationwide kidney exchanges)

• Also, some open problems!
Covers recent and ongoing work – talk to me for details!

Publications:  jpdickerson.com/pubs.html
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KIDNEY EXCHANGE
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KIDNEY TRANSPLANTATION
• US waitlist: about 100,000

• 35,587 added in 2017
• 4,044 people died while waiting
• 14,022 people received a kidney

from the deceased donor waitlist
• 5,794 people received a kidney from a living donor

• Some through kidney exchanges!
• This talk: experience with UNOS national kidney exchange 

(and some data from the NHS NLDKSS)

1988 1993 1998 2003 2008 2013

Transplants Waiting List

Demand

Supply
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[Roth et al. 2004]
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TRIED-AND-TRUE: DECEASED-
DONOR ALLOCATION
Online bipartite matching problem:
• Set of patients is known (roughly) in advance

• Organs arrive and must be dispatched quickly

Constraints:
• Locality: organs only stay good for 24 hours

• Blood type, tissue type, etc.

Who gets the organ?  Prioritization based on:
• Age?

• QALY maximization?

• Quality of match?

• Time on the waiting list?
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KIDNEY EXCHANGE
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NON-DIRECTED DONORS & CHAINS

Not executed simultaneously, so no length cap required based on 
logistic concerns …

… but in practice edges fail, so some finite cap is used!

NDD
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P2

D2

P3

D3

…
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Pay it 
forward

[Rees et al. 2009]
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REAL-WORLD IMPACT
Kidney exchange is only a decade young, but already 
accounts for >12% of living donations in the United States
• Now a worldwide phenomenon (AU, CA, IL, PT, TR, UK, …)

• (Slowly) moving toward organized international exchange

Extensive experience with, e.g., the United Network for Organ 
Sharing (UNOS) US nationwide kidney exchange!
• 155+ transplant centers (roughly 69% of the US)

• Completely autonomous biweekly match runs

• Only automated exchange in the US
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THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of 
cycles of length at most L, and chains

• Typically, 2 ≤ L ≤ 5 for kidneys (e.g., L=3 at UNOS)
• NP-hard (for L>2) in theory, really hard in practice
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[Abraham et al. 07, Biro et al. 09]

[Glorie et al. 2014, 
Anderson et al. 2015, 
Plaut et al. 2016, 
Dickerson et al. 2016 ...] 18



Binary variable xc for each feasible cycle or chain c

Maximize
u(M) = Σ wc xc

Subject to
Σc : i in c xc ≤ 1 for each vertex i

A SIMPLE INTEGER PROGRAM
(“Best” = max weight, myopic matching)

“SIMPLE” …?
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[Roth et al. 04, 05, 
Abraham et al. 07]
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THE BIG PROBLEM
What is “best”?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?

• Modeling choices?

• Incentives? Ethics? Legality?

Optimization can handle this, but may be inflexible in 
hard-to-understand ways (for humans)

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

Want humans in the loop at a high level
(and then CS/Opt handles the implementation)
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MANAGING SHORT-TERM 
UNCERTAINTY

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[EC-13, EC-15, EC-16, Management Science 18, AAAI-19]
With A. Blum, N. Haghtalab, D. Manlove, D. McElfresh, B. Plaut, A. Procaccia, T. Sandholm, A. Sharma, J. Trimble
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MATCHED ≠ TRANSPLANTED

Only around 10-15% of UNOS matched structures 
result in an actual transplant
• Similarly low % in other exchanges [ATC 2013]

Many reasons for this.  How to handle?

One way: encode probability of transplantation
rather than just feasibility
• for individuals, cycles, chains, and full matchings
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DISCOUNTED CLEARING 
PROBLEM

Find matching M* with highest discounted utility

1 2

3
Maximum cardinality Maximum expected transplants

(“Best” = max expected cardinality  |  limited recourse)

0.1 0.1

0.9

0.9
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Practice:  Solved via branch-and-price 
• One binary decision variable per cycle/chain
• Upper-bounding is now NP-hard
• Pricing problem is (empirically) much easier

Maybe this is 
a good idea …

SOLVING THIS NEW PROBLEM

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

Theorem:
In a sparse random graph model, for any failure probability p, w.h.p. 
there exists a matching that is “linearly better” than any max-
cardinality matching
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UNOS
2010-2014

Oct. 2010 Late 2014
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PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match 
run to test for (non)existence of edges
• E.g., more extensive medical testing, donor interviews, 

surgeon interviews, …

Cast as a stochastic matching problem:

Given a graph G(V,E), choose subset of edges S such that:

|M(S)| ≥ (1-ε) |M(E)| 

Need: “sparse” S, where every vertex has O(1) incident tested edges
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UNOS DATA
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Even 1 or 2 extra tests would result in a huge lift

At p=0.5, one edge test 
per vertex à +21% OPT
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In theory and practice, we’re helping the 
global bottom line by considering post-
match failure …

… But can this hurt some individuals?
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BALANCING FAIRNESS 
AND EFFICIENCY

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[AAMAS-14, AAAI-15, AAAI-18, Invited to AIJ, u.r. 2018]
With D. McElfresh, A. Procaccia and T. Sandholm
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SENSITIZATION IN KIDNEY 
TRANSPLANTATION 

Highly-sensitized patients: unlikely to be compatible 
with a random donor

• Deceased donor 

waitlist: 17%

• Kidney exchanges: 

much higher (60%+)

“Hard to match” patients

“Easy to match” patients

John P. Dickerson - UMD CMSC320 - Dec 10, 2018
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PRICE OF FAIRNESS
Efficiency vs. fairness:
• Utilitarian objectives may favor certain classes at 
the expense of marginalizing others

• Fair objectives may sacrifice efficiency in the name 
of egalitarianism

Price of fairness: relative system efficiency loss 
under a fair allocation
• Very applicable to kidney exchange!

[Bertismas, Farias, Trichakis 2011]
[Caragiannis et al. 2009]
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CONTRADICTORY GOALS
Earlier, we saw failure-aware matching results in tremendous 
gains in #expected transplants 
Gain comes at a price – may further marginalize hard-to-
match patients because:

• Highly-sensitized patients tend to be matched in chains
• Highly-sensitized patients may have higher failure rates (in, 

e.g., APD data, not in UNOS data)
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UNOS runs, weighted fairness, constant probability of failure (x-axis), 
increase in expected transplants over deterministic matching (y-axis)

0.0 0.2 0.4 0.6 0.8 1.0

Failure Probability
-10%

-5%

0%

+5%

+10%

+15%

+20%

+25%

+30%

E
xp

ec
te

d
Tr

an
sp

la
nt

s

UNOS Individual Matches (Constant)
Failure-Aware
Max Cardinality
� = 1

� = 2

� = 5

� = 10

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

Be
at

s 
ef

fic
ie

nt
 d

et
er

m
in

is
tic

33



Fairness vs. efficiency can be balanced in 
theory and in practice in a static model …

… But how should we match over time?
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LEARNING TO MATCH IN A 
DYNAMIC ENVIRONMENT

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[AAAI-12, AAAI-15, NIPS-15 MLHC, w.p. 2018]
With M. Curry, D. McElfresh, C. Moy, A. Procaccia, and T. Sandholm
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DYNAMIC KIDNEY EXCHANGE
Kidney exchange is a naturally dynamic event
Can be described by the evolution of its graph
• Additions, removals of edges and vertices

Vertex Removal Edge Removal Vertex/Edge Add
Transplant, this exchange               Matched, positive crossmatch Normal entrance

Transplant, deceased donor 
waitlist     Matched, candidate refuses donor  

Transplant, other exchange 
("sniped") Matched, donor refuses candidate

Death or illness                        
Pregnancy, sickness changes 
HLA 

Altruist runs out of patience           
Bridge donor reneges

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

How should we balance matching now versus waiting to match? 36



FUTUREMATCH: LEARNING TO MATCH IN 
DYNAMIC ENVIRONMENTS

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

1. Domain expert describes overall goal 
2. Take historical data and policy input to learn a weight function w for match 

quality
3. Take historical data and create a graph generator with edge weights set by w
4. Using this generator and a realistic exchange simulator, learn potentials for 

graph elements as a function of the exchange dynamics

Offline (run once or periodically)

1. Combine w and potentials to form new edge weights on real input graphs
2. Solve maximum weighted matching and return match

Online (run every match)
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We show it is possible to:
• Increase overall #transplants a lot at a (much) smaller 

decrease in #marginalized transplants

• Increase #marginalized transplants a lot at no or very low 
decrease in overall #transplants

• Increase both #transplants and #marginalized

Sweet spot depends on distribution:
• Luckily, we can generate – and learn from – realistic families of 

graphs!

EXPERIMENTAL 
RESULTS & IMPACT

Presented at 
Supercomputing

Tied with IBM Watson
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FutureMatch now used for policy 
recommendations at UNOS 38



LEARNING & DYNAMIC KIDNEY EXCHANGE

1. Embed current compatibility graph into fixed-dimensional space
2. Neural network uses those vectors to learn appropriate policy
3. Flip a biased coin
4. If heads: find and match maximum cardinality matching
5. Simulate kidney exchange environment and grow the graph 
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1. EMBEDDING

Neural networks generally take a fixed-sized vector as input
• Our state space: graphs of any size
• Need: embed the graph as a vector and still maintain certain 

properties, such as node neighborhood structure. We use random 
walks to do so [Li, Campbell, Caceres 2017]

Use random walk on a carefully selected initial distribution to 
capture temporal changes in probability distribution
• Encode distance between pairs of probability distributions
• Empirically, this approach can distinguish between, e.g., Erdős–

Rényi and Stochastic Block Model graphs
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2. EMBEDDING TO NEURAL NET

Feed an embedded graph into, e.g., a neural network to output a 

learned probability for our biased coin flip

• (Currently, using an adaptation of Asynchronous Advantage Actor-

Critic (A3C) method [Mnih 2016])
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4. MAX MATCHING (THE CLEARING 
PROBLEM)—OR NOT

3. BIASED COIN FLIP W/LEARNED 
PROBABILITY 
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5. KIDNEY EXCHANGE SIMULATION 
– CHANGING THE INPUT GRAPH
To train the neural network, we must be able to simulate kidney 
exchange (graphs). We use several evolution models.
• Homogeneous Erdős–Rényi graphs [Akbarpour et al. 2017+]

• Heterogeneous Erdős–Rényi graphs [Ashlagi et al. 2013+]

• Real data from the UNOS exchange

• (Real data from other exchanges?)
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EARLY RESULTS
We replicate results from prior theory papers:
• In some models, dynamic matching helps
• In some models, dynamic matching does not help
Still iterating on:
• Neural net structure
• Action space (binary coin flip vs. multiple match types)
• Learning method (A3C vs. DQN vs. more standard methods)
But …
• Seems promising. Can learn matching policies beyond simply 

batching for T time periods; can realize gains over greedy.
• Policies depend on graph structure.
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COMPETITION WITHIN, AND 
BETWEEN, KIDNEY EXCHANGES

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[AAAI-15, AMMA-15, IJCAI-18, w.p. 2018]
With S. Das, N. Gupta, C. Hajaj, A. Hassidim, Z. Li, T. Sandholm, and D. Sarne
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MANAGING INCENTIVES
Clearinghouse cares about global welfare:

• How many patients received kidneys (over time)?

Transplant centers care about their individual welfare:
• How many of my own patients received kidneys?

Patient-donor pairs care about their individual welfare:
• Did I receive a kidney?
• (Most work considers just clearinghouse and centers)
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PRIVATE VS GLOBAL 
MATCHING
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RACE TO THE BOTTOM
In the US, there are multiple competing exchanges:
• UNOS, NKR, APD, …
• Single-center “centralized exchanges”
What about international exchange?
• EU COST Action to investigate connection of exchanges

Fragmenting the market results in:
• Higher short-term failure rates
• Fewer matching opportunities
• Higher (aka greedier, “myopic”) match speed
• Overall efficiency loss (in theory, simulation, and reality)
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QUESTIONS?

Joint work with:

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

More information:
http://jpdickerson.com

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

Code:
/JohnDickerson/KidneyExchange

Funding & support:

NDSEG
Fellowship

Facebook
Fellowship
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THE CUTTING EDGE
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MOVING BEYOND KIDNEYS: 
LIVERS
Similar matching problem (mathematically)

Right lobe is biggest but riskiest; exchange may reduce right 
lobe usage and increase transplants

[Sönmez 2014]

[Ergin, Sönmez, Ünver w.p. 2015]
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MOVING BEYOND KIDNEYS: 
MULTI-ORGAN EXCHANGE
Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

Kidney transplants are “easy” and popular:
• Many altruistic donors

Liver transplants: higher mortality, morbidity:
• (Essentially) no altruistic donors
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[Dickerson Sandholm AAAI-14, JAIR-17]
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Fundamentally different matching problem
• Two donors needed

MOVING BEYOND KIDNEYS: 
LUNGS

[Date et al. 2005; 
Sönmez 2014]

(Compare to the single 
configuration for a “3-cycle” in 
kidney exchange.)

[Ergin, Sönmez, Ünver w.p. 2014]
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FAILURE-AWARE MODEL
Compatibility graph G
• Edge (vi, vj) if vi’s donor can donate to vj’s patient 
• Weight we on each edge e

Success probability qe for each edge e

Discounted utility of cycle c
u(c) = ∑we � ∏qe

Value of successful cycle Probability of success
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FAILURE-AWARE MODEL
Discounted utility of a k-chain c

Cannot simply “reweight by failure probability”

Utility of a match M:     u(M) = ∑ u(c)

Exactly first i transplants Chain executes in entirety
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INCREMENTALLY SOLVING 
VERY LARGE IPS
#Decision variables grows linearly with #cycles and #chains 
in the pool
• Millions, billions of variables

• Too large to fit in memory

Branch-and-price incrementally brings variables into a 
reduced model [Barnhart et al. 1998]

Solves the “pricing problem” – each variable gets a real-
valued price 
• Positive price à resp. constraint in full model violated

• No positive price cycles à optimality at this node
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CONSIDERING ONLY 
“GOOD” CHAINS

Donation to 
waitlist

Discounted utility of 
current chain

Optimistic future value 
of infinite extension

Pessimistic sum of LP 
dual values in model

Theorem:
Given a chain c, any extension c’ will not be needed in an optimal 
solution if the infinite extension has non-positive value.
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G(n, t(n), p): random graph with
• n patient-donor pairs

• t(n) altruistic donors

• Probability Θ(1/n) of incoming edges

Constant transplant success probability q

Theorem

For all q∈ (0,1) and α, β > 0, given a large G(n, αn, β/n), w.h.p. there 
exists some matching M’ s.t. for every maximum cardinality matching 
M,

uq(M’) ≥ uq(M) + Ω(n)
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BRIEF INTUITION: 
COUNTING Y-GADGETS

For every structure X of constant size, w.h.p. can find Ω(n) structures 
isomorphic to X and isolated from the rest of the graph
Label them (alt vs. pair): flip weighted coins, constant fraction are 
labeled correctly à constant × Ω(n) = Ω(n)
Direct the edges: flip 50/50 coins, constant fraction are entirely 
directed correctly à constant × Ω(n) = Ω(n)
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Under the “most stringent” fairness rule:

Theorem

Assume “reasonable” level of sensitization and “reasonable” distribution of 
blood types.  Then, almost surely as nà ∞,

(And this is achieved using cycles of length at most 3.) 
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Linear 
efficiency loss

Sublinear loss

B-AB O-AB X-X

AB-B p̄µABµO AB-O A-O

AB-A A-AB O-A B-A

O-B B-O A-B o(n)

8X

1
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BETTER STATIC 
OPTIMIZATION METHODS
Recall two main methods for solving big IPs for kidney 

exchange:

• Branch-and-price = B&B + column generation
• Constraint generation

Many different ways to do these:

• E.g., how do I solve the pricing problem?
• E.g., which constraints should I add to the model?

Big runtime changes [Anderson et al. PNAS-2015, Glorie et al. MSOM-2014]

John P. Dickerson - UMD CMSC320 - Dec 10, 2018 6
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BASIC EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i

Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[Abraham et al. 07]

Flow constraint
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STATE OF THE ART FOR 
EDGE FORMULATION
Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

• PC-TSP: visit each city (patient-donor pair) exactly once, but with 
the additional option to pay some penalty to skip a city (penalized 
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L, 
but build chains in the final solution from decision variables 
associated with individual edges
Then, an exponential number of constraints could be required to 
prevent the solver from including chains of length greater than K; 
these are generated incrementally until optimality is proved.

• Leverage cut generation from PC-TSP literature to provide stronger 
(i.e. tighter) IP formulation

[Anderson et al. PNAS-2015]
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BEST EDGE FORMULATION

John P. Dickerson - UMD CMSC320 - Dec 10, 2018

[Anderson et al. 15]

A

A

A

V

If: flow into v from a chain
Then: at least as much flow
across cuts from {A}

C1

C2

C3

…

Ck
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REVIEW: CYCLE 
FORMULATION

Binary variable xc for each cycle/chain c of length at most L
Maximize

Σ |c|xc
Subject to

Σc : i in c xc ≤ 1 for each vertex i

Objective = maximum cardinality
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DFS TO SOLVE 
PRICING PROBLEM
Pricing problem:

• Optimal dual solution π* to reduced model
• Find non-basic variables with positive price (for a 

maximization problem)
• 0 < weight of cycle – sum of duals in π* of constituent vertices

First approach [Abraham et al. EC-2007] explicitly prices all 
feasible cycles and chains through a DFS

• Can speed this up in various ways, but proving no positive 
price cycles exist still takes time poly in chain/cycle cap = 
bad for even reasonable caps

[Abraham et al. PNAS-2015]
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THE RIGHT IDEA
Idea: solve structured optimization problem that implicitly prices 
variables

Price: wc – Σv in c δv =    Σe in c we – Σv in c δv = Σ(u,v) in c [w(u,v) – δv]
Take G, create G’ s.t. all edges e = (u,v) are reweighted r(u,v) = δv – w(u,v)

• Positive price cycles in G = negative weight cycles in G’

Bellman-Ford finds shortest paths

• Undefined in graphs with negative weight
• Adapt B-F to prevent internal looping during the traversal

• Shortest path is NP-hard (reduce from Hamiltonian path:
• Set edge weights to -1, given edge (u,v) in E, ask if shortest path 

from u to v is weight 1-|V| à visits each vertex exactly once
• We only need some short path (or proof that no negative cycle exists)

• Now pricing runs in time O(|V||E|cap2)
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LOOP BLOCKING MUST 
BE DURING TRAVERSAL

(cycle cap = 3, chain cap = 6)
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EXPERIMENTAL RESULTS
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Note: Anderson et al.’s algorithm (CG-TSP) is very strong for uncapped aka 
“infinite-length” chains, but a chain cap is often imposed in practice 
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