
CMSC 330: Organization of 
Programming Languages

Functional Programming with OCaml

1
CMSC330 Fall 2018



What is a functional language?

2

A functional language: 

• defines computations as mathematical functions
• avoids mutable state

State: the information maintained by a computation

Mutable: can be changed



Functional vs. Imperative

3

Functional languages: 

• Higher level of abstraction 
• Easier to develop robust software 
• Immutable state: easier to reason about software 

Imperative languages: 

• Lower level of abstraction 
• Harder to develop robust software 
• Mutable state: harder to reason about software 



4

Commands specify how to compute by destructively 
changing state:

x = x+1;
a[i] = 42;
p.next = p.next.next;

Functions/methods have side effects:
int wheels(Vehicle v) {

v.size++;
return v.numWheels;

}

Imperative Programming



5

The fantasy of mutability:
• It's easy to reason about: the machine does this, then this...

The reality of mutability: 
• Machines are good at complicated manipulation of state 
• Humans are not good at understanding it! 

• mutability breaks referential transparency: ability to replace an 
expression with its value without affecting the result 

• In math, if f(x)=y, then you can substitute y anywhere you see f(x)

• In imperative languages, you cannot: f might have side effects, so 
computing f(x) at one time might result in different value at another

Mutability



6

The fantasy of mutability: 
• There is a single state 
• The computer does one thing at a time 

The reality of mutability: 
• There is no single state 

• Programs have many threads, spread across many 
cores, spread across many processors, spread across 
many computers... 

• each with its own view of memory 
• There is no single program 

• Most applications do many things at one time 

Mutability



7

Expressions specify what to compute
• Variables never change value

• Like mathematical variables 
• Functions (almost) never have side effects 

The reality of immutability:
• No need to think about state 
• Easier (and more powerful) ways to build correct programs 

and concurrent programs 

Functional programming



8

Features of ML

• First-class functions
– Functions can be data, too: parameters and return values

• Favor immutability (“assign once”)
• Data types and pattern matching

– Convenient for certain kinds of data structures

• Type inference
– No need to write types in the source language

• But the language is statically typed

– Supports parametric polymorphism
• Generics in Java, templates in C++

• Exceptions
• Garbage collection



Why study functional programming?

9

Functional languages predict the future:
• Garbage collection

• Java [1995], LISP [1958] 

• Generics

• Java 5 [2004], ML [1990] 

• Higher-order functions 

• C#3.0 [2007], Java 8 [2014], LISP [1958] 

• Type inference 

• C++11 [2011], Java 7 [2011] and 8, ML [1990]

• Pattern matching

• ML [1990], Scala [2002], Java X [201?] 
• http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html

http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html


Why study functional programming?

10

Functional languages in the real world



11

ML-style (Functional) Languages
• ML (Meta Language)

– Univ. of Edinburgh, 1973
– Part of a theorem proving system LCF

• Standard ML
– Bell Labs and Princeton, 1990; Yale, AT&T, U. Chicago

• OCaml (Objective CAML)
– INRIA, 1996

• French Nat’l Institute for Research in Computer Science

– O is for “objective”, meaning objects, which we’ll ignore
• Haskell (1998): lazy functional programming
• Scala (2004): functional and OO programming



12

Useful Information on OCaml language

• Translation available 
on the class webpage
– Developing 

Applications with 
Objective Caml

• Webpage also has link 
to another book
– Introduction to the 

Objective Caml 
Programming 
Language



13

More Information on OCaml

• Book designed to 
introduce and 
advance
understanding of 
OCaml
– Authors use OCaml in 

the real world
– Introduces new 

libraries, tools
• Free HTML online

– realworldocaml.org



Coding Guidelines

• We will not grade on style, but style is important
• Recommended coding guidelines:

• https://ocaml.org/learn/tutorials/guidelines.html

14

https://ocaml.org/learn/tutorials/guidelines.html

