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Course Goal

Learn how programming languages work

Broaden your language horizons
• Different programming languages
• Different language features and tradeoffs

Ø Useful programming patterns

Study how languages are described / specified
• Mathematical formalisms

Study how languages are implemented
• What really happens when I write x.foo(…)?

Ø (CMSC 430 goes much further)
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Course Subgoals

Learn some fundamental programming-
language concepts
• Regular expressions
• Automata theory
• Context free grammars
• Computer security

Improve programming skills
• Practice learning new programming languages
• Learn how to program in a new style
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Syllabus

Dynamic/ Scripting languages (Ruby)
Functional programming (OCaml)
Scoping, type systems, parameter passing
Regular expressions & finite automata
Context-free grammars & parsing
Lambda Calculus
Rust
Secure programming
Comparing language styles; other topics
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Calendar / Course Overview

Tests
• 4 quizzes, 2 midterm exams, 1 final exam

Clicker Quizzes
• In class, graded, during the lectures

Projects
• Project 1 – Ruby
• Project 2-4 – OCaml (and parsing, automata)

Ø P2 and P4 are split in two parts

• Project 5 – Rust
• Project 6 – Security
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Clickers

Turning Technology clicker is required. 
Subscription is free. Phone app does not work.
• You can get any of LCD, NXT, or QT2 models
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Quiz time!

According to IEEE Spectrum Magazine which is 
the “top” programming language of 2017?

A. Java
B. PHP
C. C
D. Python
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Quiz time!
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Discussion Sections
Lectures introduce the course content
Discussion sections will deepen understanding
• These are smaller, and thus can be more interactive

Oftentimes discussion section will consist of 
programming exercises
• Bring your laptop to discussion
• Be prepared to program: install the language in 

question on your laptop, or remote shell into Grace
There will also be be quizzes, and some lecture 
material in discussion sections
• Quizzes cover non-programming parts of the class
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Project Grading

You have accounts on the Grace cluster
Projects will be graded using the submit server
• Software versions on these machines are canonical

Develop programs on your own machine
• Generally results will be identical on Dept machines
• Your responsibility to ensure programs run correctly 

on the grace cluster
See web page for Ruby, OCaml, etc. versions 
we use, if you want to install at home
• We will provide a VM soon
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Rules and Reminders

Use lecture notes as your text
• Supplement with readings, Internet
• You will be responsible for everything in the notes, 

even if it is not directly covered in class!
Keep ahead of your work
• Get help as soon as you need it 

Ø Office hours, Piazza (email as a last resort)

Don’t disturb other students in class
• Keep cell phones quiet
• No laptops / tablets in class

Ø Except for taking notes (please sit in back of class)
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Academic Integrity

All written work (including projects) must be 
done on your own
• Do not copy code from other students
• Do not copy code from the web
• Do not post your code on the web
• We use similarity testing tools; cheaters are caught

Work together on high-level project questions
• Do not look at/describe another student’s code
• If unsure, ask an instructor!

Work together on practice exam questions
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CMSC 330:  Organization of 
Programming Languages

Overview
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All Languages Are (Kind of) Equivalent

A language is Turing complete if it can compute 
any function computable by a Turing Machine

Essentially all general-purpose programming 
languages are Turing complete
• I.e., any program can be written in any programming 

language

Therefore this course is useless?!
• Learn only 1 programming language, always use it
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Studying Programming Languages

Will make you a better programmer
• Programming is a human activity

Ø Features of a language make it easier or harder to program 
for a specific application

• Ideas or features from one language translate to, or 
are later incorporated by, another
Ø Many �design patterns� in Java are functional programming 

techniques

• Using the right programming language or style for a 
problem may make programming
Ø Easier, faster, less error-prone
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Studying Programming Languages

Become better at learning new languages
• A language not only allows you to express an idea, it 

also shapes how you think when conceiving it
Ø There are some fundamental computational paradigms 

underlying language designs that take getting used to 

• You may need to learn a new (or old) language
Ø Paradigms and fads change quickly in CS

Ø Also, may need to support or extend legacy systems
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Changing Language Goals

1950s-60s – Compile programs to execute 
efficiently
• Language features based on hardware concepts

Ø Integers, reals, goto statements

• Programmers cheap; machines expensive
Ø Computation was the primary constrained resource
Ø Programs had to be efficient because machines weren’t

• Note: this still happens today, just not as pervasively
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Changing Language Goals

Today
• Language features based on design concepts

Ø Encapsulation, records, inheritance, functionality, assertions

• Machines cheap; programmers expensive
Ø Scripting languages are slow(er), but run on fast machines
Ø They’ve become very popular because they ease the 

programming process

• The constrained resource changes frequently
Ø Communication, effort, power, privacy, …
Ø Future systems and developers will have to be nimble

19CMSC 330 Fall 2018



Language Attributes to Consider
Syntax
• What a program looks like

Semantics
• What a program means (mathematically)

Paradigm
• How programs tend to be expressed in the language 

Implementation
• How a program executes (on a real machine)

20CMSC 330 Fall 2018



21

Syntax

The keywords, formatting expectations, and 
“grammar” for the language
• Differences between languages usually superficial

Ø C / Java if (x == 1) { … } else { … }
Ø Ruby if x == 1 … else … end
Ø OCaml if (x = 1) then … else …

• Differences initially annoying; overcome with experience

Concepts such as regular expressions, context-free 
grammars, and parsing handle language syntax
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Semantics

What does a program mean? What does it do?
• Same syntax may have different semantics in different 

languages!

Can specify semantics informally (in prose) or 
formally (in mathematics)

Physical Equality Structural Equality
Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b
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Why Formal Semantics?

Textual language definitions are often 
incomplete and ambiguous
• Leads to two different implementations running the 

same program and getting a different result!
A formal semantics is basically a mathematical 
definition of what programs do
• Benefits: concise, unambiguous, basis for proof

We will consider operational semantics
• Consists of rules that define program execution
• Basis for implementation, and proofs that programs 

do what they are supposed to
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Paradigm

There are many ways to compute something
• Some differences are superficial

Ø For loop vs. while loop

• Some are more fundamental
Ø Recursion vs. looping
Ø Mutation vs. functional update
Ø Manual vs. automatic memory management

Language’s paradigm favors some computing 
methods over others. This class:
- Imperative - Logic
- Functional - Scripting/dynamic
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Imperative Languages

Also called procedural or von Neumann
Building blocks are procedures and statements
• Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

• FORTRAN (1954)
• Pascal (1970)
• C (1971)
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Functional (Applicative) Languages

Favors immutability
• Variables are never re-defined
• New variables a function of old ones (exploits recursion)

Functions are higher-order
• Passed as arguments, returned as results

• LISP (1958)
• ML (1973)
• Scheme (1975)
• Haskell (1987)
• OCaml (1987)
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OCaml

A mostly-functional language
• Has objects, but won�t discuss (much)
• Developed in 1987 at INRIA in France
• Dialect of ML (1973)

Natural support for pattern matching
• Generalizes switch/if-then-else – very elegant

Has full featured module system
• Much richer than interfaces in Java or headers in C

Includes type inference
• Ensures compile-time type safety, no annotations
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A Small OCaml Example 

let greet s =
List.iter (fun x -> print_string x)

[“hello, ”; s; "!\n”]

$ ocaml
Objective Caml version 3.12.1

# #use "intro.ml";;
val greet : string -> unit = <fun>
# greet "world";;
Hello, world!
- : unit = ()

intro.ml:
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Logic-Programming Languages

Also called rule-based or constraint-based
Program rules constrain possible results
• Evaluation = constraint satisfaction = search
• �A :- B� – If B holds, then A holds (“B implies A”)

Ø append([], L2, L2).
Ø append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

• PROLOG (1970)
• Datalog (1977)
• Various expert systems
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Object-Oriented Languages

Programs are built from objects
• Objects combine functions and data

Ø Often into “classes” which can inherit
class C { int x; int getX() {return x;} … }
class D extends C { … }

�Base� may be either imperative or functional
• Smalltalk (1969)
• C++ (1986)
• OCaml (1987)
• Ruby (1993)
• Java (1995)
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Dynamic (Scripting) Languages

Rapid prototyping languages for common 
tasks

• Traditionally: text processing and system interaction

“Scripting” is a broad genre of languages
• �Base� may be imperative, functional, OO…

Increasing use due to higher-layer abstractions
• Originally for text processing; now, much more

• sh (1971)

• perl (1987)

• Python (1991)

• Ruby (1993)
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#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == “330”) then
...
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Ruby

An imperative, object-oriented scripting 
language
• Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”
• Core of Ruby on Rails web programming framework 

(a key to its popularity)
• Similar in flavor to many other scripting languages
• Much cleaner than perl
• Full object-orientation (even primitives are objects!)
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A Small Ruby Example 
def greet(s)

3.times { print “Hello, � }
print “#{s}!\n”

end

% irb     # you�ll usually use �ruby� instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world") 
Hello, Hello, Hello, world!
=> nil

intro.rb:
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Theme: Software Security

Security is a big issue today
Features of the language can help (or hurt)
• C/C++ lack of memory safety leaves them open for 

many vulnerabilities: buffer overruns, use-after-free 
errors, data races, etc.

• Type safety is a big help, but so are abstraction and 
isolation, to help enforce security policies, and limit 
the damage of possible attacks

Secure development requires vigilance
• Do not trust inputs – unanticipated inputs can effect 

surprising results! Therefore: verify and sanitize
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Beyond Paradigm

Important features
• Regular expression handling
• Objects

Ø Inheritance

• Closures/code blocks
• Immutability
• Tail recursion
• Pattern matching

Ø Unification

• Abstract types
• Garbage collection

Declarations
• Explicit
• Implicit

Type system
• Static

• Polymorphism
• Inference

• Dynamic
• Type safety
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Implementation

How do we implement a programming 
language?

• Put another way: How do we get program P in 
some language L to run?

Two broad ways
• Compilation
• Interpretation
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Compilation

Source program translated (�compiled�) to 
another language
• Traditionally: directly executable machine code
• Generating code from a higher level “interface” is 

also common (e.g., JSON, RPC IDL)

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

11230452
23230456
01200312
…

�world� �Hello, world!�
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Interpretation

Interpreter executes each instruction in source 
program one step at a time
• No separate executable

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

�world�

�Hello, world!�
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Architecture of Compilers, Interpreters

42

Front End

Intermediate
Representation

Back End

Parser Static
AnalyzerSource

Compiler / Interpreter
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Front Ends and Back Ends
Front ends handle syntax
• Parser converts source code into intermediate format 

(�parse tree�) reflecting program structure
• Static analyzer checks parse tree for errors (e.g., 

erroneous use of types), may also modify it
Ø What goes into static analyzer is language-dependent!

Back ends handle semantics
• Compiler: back end (�code generator�) translates 

intermediate representation into �object language�
• Interpreter: back end executes intermediate 

representation directly 
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Compiler or Intepreter?

gcc
• Compiler – C code translated to object code, executed 

directly on hardware (as a separate step)
javac
• Compiler – Java source code translated to Java byte 

code
java
• Interpreter – Java byte code executed by virtual machine

sh/csh/tcsh/bash
• Interpreter – commands executed by shell program
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Compilers vs. Interpreters

Compilers
• Generated code more efficient
• �Heavy�

Interpreters
• Great for debugging
• Fast start time (no compilation), slow execution time

In practice
• “General-purpose” programming languages (e.g. C, 

Java) are often compiled, although debuggers 
provide interpreter support

• Scripting languages and other special-purpose 
languages are interpreted, even if general purpose
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Summary

Programming languages vary in their
• Syntax
• Semantics
• Style/paradigm
• Implementation

They are designed for different purposes
• And goals change as the computing landscape 

changes, e.g., as programmer time becomes more 
valuable than machine time

Ideas from one language appear in others
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