
CMSC 330: Organization of
Programming Languages

Administrivia

1CMSC 330 Fall 2018

Course Goal

Learn how programming languages work

Broaden your language horizons
• Different programming languages
• Different language features and tradeoffs

Ø Useful programming patterns

Study how languages are described / specified
• Mathematical formalisms

Study how languages are implemented
• What really happens when I write x.foo(…)?

Ø (CMSC 430 goes much further)

2CMSC 330 Fall 2018

Course Subgoals

Learn some fundamental programming-
language concepts
• Regular expressions
• Automata theory
• Context free grammars
• Computer security

Improve programming skills
• Practice learning new programming languages
• Learn how to program in a new style

3CMSC 330 Fall 2018

Syllabus

Dynamic/ Scripting languages (Ruby)
Functional programming (OCaml)
Scoping, type systems, parameter passing
Regular expressions & finite automata
Context-free grammars & parsing
Lambda Calculus
Rust
Secure programming
Comparing language styles; other topics

4CMSC 330 Fall 2018

Calendar / Course Overview

Tests
• 4 quizzes, 2 midterm exams, 1 final exam

Clicker Quizzes
• In class, graded, during the lectures

Projects
• Project 1 – Ruby
• Project 2-4 – OCaml (and parsing, automata)

Ø P2 and P4 are split in two parts

• Project 5 – Rust
• Project 6 – Security

5CMSC 330 Fall 2018

Clickers

Turning Technology clicker is required.
Subscription is free. Phone app does not work.
• You can get any of LCD, NXT, or QT2 models

6CMSC 330 Fall 2018

Quiz time!

According to IEEE Spectrum Magazine which is
the “top” programming language of 2017?

A. Java
B. PHP
C. C
D. Python

CMSC 330 Fall 2018 7

Quiz time!

According to IEEE Spectrum Magazine which is
the “top” programming language of 2017?

A. Java
B. PHP
C. C
D. Python

CMSC 330 Fall 2018 8

Quiz time!

CMSC 330 Fall 2018 9

Discussion Sections
Lectures introduce the course content
Discussion sections will deepen understanding
• These are smaller, and thus can be more interactive

Oftentimes discussion section will consist of
programming exercises
• Bring your laptop to discussion
• Be prepared to program: install the language in

question on your laptop, or remote shell into Grace
There will also be be quizzes, and some lecture
material in discussion sections
• Quizzes cover non-programming parts of the class

10CMSC 330 Fall 2018

Project Grading

You have accounts on the Grace cluster
Projects will be graded using the submit server
• Software versions on these machines are canonical

Develop programs on your own machine
• Generally results will be identical on Dept machines
• Your responsibility to ensure programs run correctly

on the grace cluster
See web page for Ruby, OCaml, etc. versions
we use, if you want to install at home
• We will provide a VM soon

11CMSC 330 Fall 2018

Rules and Reminders

Use lecture notes as your text
• Supplement with readings, Internet
• You will be responsible for everything in the notes,

even if it is not directly covered in class!
Keep ahead of your work
• Get help as soon as you need it

Ø Office hours, Piazza (email as a last resort)

Don’t disturb other students in class
• Keep cell phones quiet
• No laptops / tablets in class

Ø Except for taking notes (please sit in back of class)
12CMSC 330 Fall 2018

Academic Integrity

All written work (including projects) must be
done on your own
• Do not copy code from other students
• Do not copy code from the web
• Do not post your code on the web
• We use similarity testing tools; cheaters are caught

Work together on high-level project questions
• Do not look at/describe another student’s code
• If unsure, ask an instructor!

Work together on practice exam questions

13CMSC 330 Fall 2018

CMSC 330: Organization of
Programming Languages

Overview

14CMSC 330 Fall 2018

All Languages Are (Kind of) Equivalent

A language is Turing complete if it can compute
any function computable by a Turing Machine

Essentially all general-purpose programming
languages are Turing complete
• I.e., any program can be written in any programming

language

Therefore this course is useless?!
• Learn only 1 programming language, always use it

15CMSC 330 Fall 2018

Studying Programming Languages

Will make you a better programmer
• Programming is a human activity

Ø Features of a language make it easier or harder to program
for a specific application

• Ideas or features from one language translate to, or
are later incorporated by, another
Ø Many �design patterns� in Java are functional programming

techniques

• Using the right programming language or style for a
problem may make programming
Ø Easier, faster, less error-prone

16CMSC 330 Fall 2018

Studying Programming Languages

Become better at learning new languages
• A language not only allows you to express an idea, it

also shapes how you think when conceiving it
Ø There are some fundamental computational paradigms

underlying language designs that take getting used to

• You may need to learn a new (or old) language
Ø Paradigms and fads change quickly in CS

Ø Also, may need to support or extend legacy systems

17CMSC 330 Fall 2018

Changing Language Goals

1950s-60s – Compile programs to execute
efficiently
• Language features based on hardware concepts

Ø Integers, reals, goto statements

• Programmers cheap; machines expensive
Ø Computation was the primary constrained resource
Ø Programs had to be efficient because machines weren’t

• Note: this still happens today, just not as pervasively

18CMSC 330 Fall 2018

Changing Language Goals

Today
• Language features based on design concepts

Ø Encapsulation, records, inheritance, functionality, assertions

• Machines cheap; programmers expensive
Ø Scripting languages are slow(er), but run on fast machines
Ø They’ve become very popular because they ease the

programming process

• The constrained resource changes frequently
Ø Communication, effort, power, privacy, …
Ø Future systems and developers will have to be nimble

19CMSC 330 Fall 2018

Language Attributes to Consider
Syntax
• What a program looks like

Semantics
• What a program means (mathematically)

Paradigm
• How programs tend to be expressed in the language

Implementation
• How a program executes (on a real machine)

20CMSC 330 Fall 2018

21

Syntax

The keywords, formatting expectations, and
“grammar” for the language
• Differences between languages usually superficial

Ø C / Java if (x == 1) { … } else { … }
Ø Ruby if x == 1 … else … end
Ø OCaml if (x = 1) then … else …

• Differences initially annoying; overcome with experience

Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CMSC 330 Fall 2018

22

Semantics

What does a program mean? What does it do?
• Same syntax may have different semantics in different

languages!

Can specify semantics informally (in prose) or
formally (in mathematics)

Physical Equality Structural Equality
Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CMSC 330 Fall 2018

Why Formal Semantics?

Textual language definitions are often
incomplete and ambiguous
• Leads to two different implementations running the

same program and getting a different result!
A formal semantics is basically a mathematical
definition of what programs do
• Benefits: concise, unambiguous, basis for proof

We will consider operational semantics
• Consists of rules that define program execution
• Basis for implementation, and proofs that programs

do what they are supposed to
24CMSC 330 Fall 2018

25

Paradigm

There are many ways to compute something
• Some differences are superficial

Ø For loop vs. while loop

• Some are more fundamental
Ø Recursion vs. looping
Ø Mutation vs. functional update
Ø Manual vs. automatic memory management

Language’s paradigm favors some computing
methods over others. This class:
- Imperative - Logic
- Functional - Scripting/dynamic

CMSC 330 Fall 2018

Imperative Languages

Also called procedural or von Neumann
Building blocks are procedures and statements
• Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

• FORTRAN (1954)
• Pascal (1970)
• C (1971)

26CMSC 330 Fall 2018

Functional (Applicative) Languages

Favors immutability
• Variables are never re-defined
• New variables a function of old ones (exploits recursion)

Functions are higher-order
• Passed as arguments, returned as results

• LISP (1958)
• ML (1973)
• Scheme (1975)
• Haskell (1987)
• OCaml (1987)

27CMSC 330 Fall 2018

OCaml

A mostly-functional language
• Has objects, but won�t discuss (much)
• Developed in 1987 at INRIA in France
• Dialect of ML (1973)

Natural support for pattern matching
• Generalizes switch/if-then-else – very elegant

Has full featured module system
• Much richer than interfaces in Java or headers in C

Includes type inference
• Ensures compile-time type safety, no annotations

28CMSC 330 Fall 2018

A Small OCaml Example

let greet s =
List.iter (fun x -> print_string x)

[“hello, ”; s; "!\n”]

$ ocaml
Objective Caml version 3.12.1

#use "intro.ml";;
val greet : string -> unit = <fun>
greet "world";;
Hello, world!
- : unit = ()

intro.ml:

29CMSC 330 Fall 2018

Logic-Programming Languages

Also called rule-based or constraint-based
Program rules constrain possible results
• Evaluation = constraint satisfaction = search
• �A :- B� – If B holds, then A holds (“B implies A”)

Ø append([], L2, L2).
Ø append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

• PROLOG (1970)
• Datalog (1977)
• Various expert systems

30CMSC 330 Fall 2018

Object-Oriented Languages

Programs are built from objects
• Objects combine functions and data

Ø Often into “classes” which can inherit
class C { int x; int getX() {return x;} … }
class D extends C { … }

�Base� may be either imperative or functional
• Smalltalk (1969)
• C++ (1986)
• OCaml (1987)
• Ruby (1993)
• Java (1995)

31CMSC 330 Fall 2018

Dynamic (Scripting) Languages

Rapid prototyping languages for common
tasks

• Traditionally: text processing and system interaction

“Scripting” is a broad genre of languages
• �Base� may be imperative, functional, OO…

Increasing use due to higher-layer abstractions
• Originally for text processing; now, much more

• sh (1971)

• perl (1987)

• Python (1991)

• Ruby (1993)

32

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == “330”) then
...

CMSC 330 Fall 2018

Ruby

An imperative, object-oriented scripting
language
• Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”
• Core of Ruby on Rails web programming framework

(a key to its popularity)
• Similar in flavor to many other scripting languages
• Much cleaner than perl
• Full object-orientation (even primitives are objects!)

33CMSC 330 Fall 2018

A Small Ruby Example
def greet(s)

3.times { print “Hello, � }
print “#{s}!\n”

end

% irb # you�ll usually use �ruby� instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world")
Hello, Hello, Hello, world!
=> nil

intro.rb:

34CMSC 330 Fall 2018

Theme: Software Security

Security is a big issue today
Features of the language can help (or hurt)
• C/C++ lack of memory safety leaves them open for

many vulnerabilities: buffer overruns, use-after-free
errors, data races, etc.

• Type safety is a big help, but so are abstraction and
isolation, to help enforce security policies, and limit
the damage of possible attacks

Secure development requires vigilance
• Do not trust inputs – unanticipated inputs can effect

surprising results! Therefore: verify and sanitize

36CMSC 330 Fall 2018

38

Beyond Paradigm

Important features
• Regular expression handling
• Objects

Ø Inheritance

• Closures/code blocks
• Immutability
• Tail recursion
• Pattern matching

Ø Unification

• Abstract types
• Garbage collection

Declarations
• Explicit
• Implicit

Type system
• Static

• Polymorphism
• Inference

• Dynamic
• Type safety

CMSC 330 Fall 2018

Implementation

How do we implement a programming
language?

• Put another way: How do we get program P in
some language L to run?

Two broad ways
• Compilation
• Interpretation

39CMSC 330 Fall 2018

Compilation

Source program translated (�compiled�) to
another language
• Traditionally: directly executable machine code
• Generating code from a higher level “interface” is

also common (e.g., JSON, RPC IDL)

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

11230452
23230456
01200312
…

�world� �Hello, world!�

40CMSC 330 Fall 2018

Interpretation

Interpreter executes each instruction in source
program one step at a time
• No separate executable

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

�world�

�Hello, world!�

41CMSC 330 Fall 2018

Architecture of Compilers, Interpreters

42

Front End

Intermediate
Representation

Back End

Parser Static
AnalyzerSource

Compiler / Interpreter

CMSC 330 Fall 2018

Front Ends and Back Ends
Front ends handle syntax
• Parser converts source code into intermediate format

(�parse tree�) reflecting program structure
• Static analyzer checks parse tree for errors (e.g.,

erroneous use of types), may also modify it
Ø What goes into static analyzer is language-dependent!

Back ends handle semantics
• Compiler: back end (�code generator�) translates

intermediate representation into �object language�
• Interpreter: back end executes intermediate

representation directly

43CMSC 330 Fall 2018

Compiler or Intepreter?

gcc
• Compiler – C code translated to object code, executed

directly on hardware (as a separate step)
javac
• Compiler – Java source code translated to Java byte

code
java
• Interpreter – Java byte code executed by virtual machine

sh/csh/tcsh/bash
• Interpreter – commands executed by shell program

44CMSC 330 Fall 2018

Compilers vs. Interpreters

Compilers
• Generated code more efficient
• �Heavy�

Interpreters
• Great for debugging
• Fast start time (no compilation), slow execution time

In practice
• “General-purpose” programming languages (e.g. C,

Java) are often compiled, although debuggers
provide interpreter support

• Scripting languages and other special-purpose
languages are interpreted, even if general purpose

45CMSC 330 Fall 2018

Summary

Programming languages vary in their
• Syntax
• Semantics
• Style/paradigm
• Implementation

They are designed for different purposes
• And goals change as the computing landscape

changes, e.g., as programmer time becomes more
valuable than machine time

Ideas from one language appear in others

50CMSC 330 Fall 2018

