CMSC 330: Organization of
Programming Languages

DFAs, and NFAs, and Regexps

CMSC330 Fall 2018

Types of Finite Automata

» Deterministic Finite Automata (DFA)
* Exactly one sequence of steps for each string
e All examples so far

» Nondeterministic Finite Automata (NFA)
* May have many sequences of steps for each string
* Accepts if any path ends in final state at end of string
* More compact than DFA

» But more expensive to test whether a string matches

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

Comparing DFAs and NFAs

» NFAS can have more than one transition
leaving a state on the same symbol

d
O=<_
» DFAs allow only one transition per symbol

e |.e., transition function must be a valid function
* DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

€ .
O > e-transition

» DFA transition must be labeled with symbol
* DFA is a special case of NFA

DFA for (alb)*abb

RE®

NFA for (alb)*abb

* Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string

NFA for (ablaba)*

» aba
* Has paths to states SO, S1

» ababa

* Has paths to S0, S1
 Need to use g-transition

Comparing NFA and DFA for (ablaba)*

DFA

NFA Acceptance Algorithm Sketch

» When NFA processes a string s

* NFA must keep track of several “current states”
» Due to multiple transitions with same label
» g-transitions

* |f any current state is final when done then accept s

» Example

* After processing “a”
» NFA may be in states

S1

S2

S3

CMSC 330 11

Formal Definition

» A deterministic finite automaton (DFA) is a
o-tuple (2, Q, qo, F, 0) where

* 2 iIs an alphabet

* Qis a nonempty set of states

* o € Qis the start state

F € Qs the set of final states

0 : Q x 2 — Q specifies the DFA's transitions
» What's this definition saying that o is?

» A DFA accepts s if it stops at a final state on s

Formal Definition: Example

.« ¥ ={0, 1)

]
®* Jdo = SO .
. F ={S1)
. symbol 0 1
o) 0 1
s 50| so| s
£ S1| S0| S

or as { (S0,0,50),(S0,1,51),(S1,0,S0),(S1,1,51) }

Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, q,, F,) where
e 2,Q, g0, F as with DFAs
* 0 € Qx(2u{e}) x Q specifies the NFA's transitions

* 2={a}

« Q={S1, S2, S3}

* Qo= S1

e F={S3}

e 6={(51,a,51), (S1,a,52), (S2,¢,S3) }

Example

» An NFA accepts s if there is at least one path via s
from the NFA's start state to a final state

Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept
the same languages!

can
reduce

DFA < NFA

can transform can reduce

RE

Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct
NFA: <A>=(2, Q, qp, F, 0)

* Remember regular expressions are defined
recursively from primitive RE languages

* |Invariant: |F| =1 inour NFAs
> Recall F = set of final states

» Will define <A> for base cases: 0,¢, @
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

» Base case: o

jOR=0

<o> = ({0}, {S0, S1}, SO, {S1}, {(SO, o, S1)})

Reduction

» Base case: ¢

Y

<e> = (@, {S0}, S0, {SO0}, @)

» Base case: ¢

=

<¢> = (@, {S0, S1}, SO, {S1},)

Reduction: Concatenation

» Induction: AB

<A>

e <A>= (24, Qa, Qa, {fa}, On)
¢ = (23, Qg, gs, {fs}, OB)

Reduction: Concatenation

» Induction: AB
T oo e
_ ~- J - ~ /

<A>

o <A> = (ZA, QA, Ja, {fA}’ 6A)
* = (2, Qg, gs, {fs}, Os)
* <AB>= (2a U 25, Qa U Qg, a, {fa}, 04w 0s U {(fa£,08)})

Reduction: Union

» Induction: A|B »@
{0

o <A> = (ZA QA Jda, {fA} 6A
* = (%, Qg, g, {fz}, Og)

Reduction: Union

» Induction: A|B I @ I

Y

* <A>= (2a, Qa, ga, {fa}, On)
* = (23, Qg, gs, {fs}, Op)
o <A|B>= (25U 25, Qa U Qg U {S0,S1}, SO, {S1},
6A o 68 U {(So’aan)1 (So’aan)’ (fA1£=S1)’ (fB5£’S1)})

Reduction: Closure

» Induction: A*

oSS

e <A>= (24, Qa, Qa, {fa}, On)

Reduction: Closure

» Induction: A*

* <A>= (2a, Qa, ga, {fa}, On)
o <A*>= (Z,, Q) U {S0,S1}, SO, {S1},
Oa U {(fa,€,51), (S0,¢,9,), (S0,£,S1), (S1,£,S0)})

Quiz 2: Which NFA matches a* ?

Quiz 2: Which NFA matches a* ?

Quiz 3: Which NFA matches a|b* ?

Quiz 3: Which NFA matches a|b* ?

RE — NFA

Draw NFAs for the regular expression (0[1)*110*

RE — NFA

Draw NFAs for the regular expression (ab*c|d*alab)d

Reduction Complexity

» Given a regular expression A of size n...
Size = # of symbols + # of operations

» How many states does <A> have”?
* Two added for each |, two added for each *
* O(n)
* That's pretty good!

Recap

» Finite automata » Reducing RE to NFA
* Alphabet, states... * Concatenation
* (2,Q,qpF,0
(Qo) .a ® £ .b ®
» Types

* Deterministic (DFA)

"

* Non-deterministic (NFA)
a

Y/a

vy

CMSC 330 =2

Reducing NFA to DFA

can
reduce

DFA < NFA

can reduce

RE

Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» Intuition
e Build DFA where

» Each DFA state represents a set of NFA “current states”

» Example
d

\ / a
RO DS
NFA DFA

CMSC 330 34

Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
 DFA state is a subset of set of all NFA states

» Algorithm
* Input
> NFA (Z, Q, qo, Fn,)
e Qutput
> DFA (2, R, ro, Fg, 8)

* Using two subroutines
» €-closure(d, p) (and e-closure(9, S))
» move(d, p, a) (and move(d, S, a))

CMSC 330

35

e-transitions and g-closure

» Wesayp & q

* Ifitis possible to go from state p to state g by taking only
e-transitions in 0

e If3p, p1, P2, ... Py d € Q such that

> {p.&,p1} € O, {P1,&,p2} €O, ... , {Pn,€E,Q} € O
» €-closure(0, p)

* Set of states reachable from p using e-transitions alone
> Set of states g such that p £, g according to 0
> e-closure(®, p)={q|p & qind}
> e-closure(d, Q)={q|p e Q, p£—> qgind}

* Notes

» €-closure(0, p) always includes p

» We write e-closure(p) or e-closure(Q) when 0 is clear from context
CMSC 330 36

e-closure: Example 1

» Following NFA contains
+ S15,.82

« S25,83
¢« S1%,83
. £ £ a
» Since S1 — S2 and S2 — S3

» €-closures

* ¢-closure(S1)= {351,352, S3}

* ¢-closure(S2) = {52, S3}

e g-closure(S3)= {S3}

(

o)

* e-closure({S1,82})= {351,82,S3}u{S2, S3}

CMSC 330 37

e-closure: Example 2

» Following NFA contains
¢ 315 83
e« S35,82
e S15% 82

> Since S1 5 S3and S3 -5 S2

» €-closures
» e-closure(S1)= {S1,3S2, S3}
* e-closure(S2)= {S2}
* e-closure(S3) = {S2,S3}
e e-closure({S2,S3})= {S2}u{S2, S3}

CMSC 330 38

e-closure Algorithm: Approach

» Input: NFA (2, Q, qo, F,,, 0), State Set R
» Output: State Set R’

» Algorithm
Let R’=R /[start states
Repeat
LetR =R’ /[continue from previous

LetR"=Ru{q|peR,(p,e q) € b} // new g-reachable states

Until R = R’ /[stop when no new states

This algorithm computes a fixed point
see note linked from project description

CMSC 330 Spring 2018 39

e-closure Algorithm Example

» Calculate s-closure(5.,{S1})

{S1} {S1} a

LletR’=R
{S1) {S1, S2} Repoat
Let R= R’
LetR"=Ru{g|peR,(p,eq)ed
{$1,82} {S1,82,83} |‘eiR=RolalpsRpoeaed

{S1, S2, S3} {S1, S2, S3}

CMSC 330 Spring 2018 40

Calculating move(p,a)

» move(0,p,a)

* Set of states reachable from p using exactly one
transition on a
> Set of states g such that{p, a, q} € 0

> move(d,p,a)={q|{p,a,qtcd}
> move(6,Qa)={q|peQ{p,a,qted}
- i.e., can “lift” move() to start from a set of states Q

 Notes:

» move(d,p,a) is @ if no transition (p,a,q) € O, for any q
» We write move(p,a) or move(R,a) when & clear from context

CMSC 330 41

move(a,p) : Example 1

» Following NFA

» Move a

(51, a)
* move(S1,b)= @ move({S1,S2},b) = { S3)
* move(S2, a) = Z
* move(S2, b) = {S3]
* move(S3,a)= 9
* move(S3,b)= 9

CMSC 330 42

move(a,p) : Example 2

» Following NFA

e 2={a,b}
» Move
* move(S1,a)= {S2}
* move(S1,b)={S3} move((S1,52},a) = {S2,53}
* move(S2,a)= {S3}
* move(S2,b)= O
* move(S3,a)= 9
* move(S3,b)= 9

CMSC 330 43

NFA — DFA Reduction Algorithm (“subset”)

. Input NFA (Z, Q, qq, F.,, 8), Output DFA (Z, R, r,, Fy, &)

» Algorithm
Let ry = e-closure(d,qp), add it to R // DFA start state
While 3 an unmarked stater e R /[process DFA state r
Mark r // each state visited once
Foreacha e X // for each letter a
Let E = move(d,r,a) // states reached via a
Let e = e-closure(d,E) /] states reached via ¢
Ife ¢ R /I if state e is new
Let R =R U {e} // add e to R (unmarked)
Leto' =06 u{r, a, €} // add transition r—e
LetFy={r|3s erwiths € F,} // final if include state in F,

CMSC 330 44

NFA — DFA Example 1

e Start = e-closure(0,51) = { {S1,S3} } NFA

R={{51,S3}}

re R={51,S3}

* move(d,{S1,S3},a) = {S2}
» e = g-closure(0,{S2}) = {S2}
» R=RuU{{S2}} ={{S1,S3}, {S2} } DFA

> 8 =58 U{{S1,93), a, {32}}
move(d,{S1,S3},b) =

CMSC 330 45

NFA — DFA Example 1 (cont.)

» R={{S1,83}, {S2}}
*reR= {82}
* move(d,{S2},a)=(O
* move(d,{S2},b) = {S3}
» e = g-closure(0,{S3}) = {S3}
» R=R U {{S3}} = {{S1,33}, {S2}, {S3} } DFA

CMSC 330 46

NFA — DFA Example 1 (cont.)

- R={{S1,33}, {S2}, {S3}} NFA

* r ¢ R={S3} a b
+ Move({S3},a) = @ 9 @
* Move({S3},b) =0 ¢

* Mark {S3}, exit loop

> Since S3 e F, a b
* Done!

CMSC 330 47

NFA — DFA Example 2

» NFA » DFA

R = { [{a}, |{B,D}, |{C,D}

CMSC 330

Quiz 4: Which DFA is equiv to this NFA?

NFA:

@ @

&

b

None of the above

Quiz 4: Which DFA is equiv to this NFA?

NFA:

@ @

&

b

None of the above

Actual Answer

NFA — DFA Example 3

» NFA » DFA

R={/{AE}, |{B,D,E}, {C,D}, {E}|}

CMSC 330 52

NFA — DFA Example

NFA — DFA Practice

NFA — DFA Practice

Analyzing the reduction

» Any string from {A} to either {D} or {CD}
* Represents a path from A to D in the original NFA

CMSC 330

56

Subset Algorithm as a Fixed Point

» Input: NFA (2, Q, qo, F, 0)
» Output: DFA M
» Algorithm

Let qo” = e-closure(d, qg)
Let F'={qo’} ifqy N F# @, or @ otherwise
Let M’ = (Z, {90}, q0’, F’, @) // starting approximation of
DFA
Repeat
LetM =M’ /[current DFA approx
For each q € states(M), a € = // for each DFA state g and letter a
Let s = e-closure(d, move(d, q, a)) // new subset from q
Let F'={s}if s N F# @, or @ otherwise, // subset contains final?
M =M v (9, {s}, @, F, {(q, a, s)}) /[update DFA
Until M =M // reached fixed point

CMSC 330 Spring 2018 57

Redux: DFA to NFA Example 1

e q, = e-closure(5,51) = {S1,S3}
o ' ={{S1,S3}}since {S1,S3} N {S3}# @ NFA

e M'={2, {{S1,S3}}, {S1,S3}, {{S1,S3}}, 0}
Q’ do F’ O’

CMSC 330 Spring 2018 58

Redux: DFA to NFA Example 1 (cont)

o M'={5%, {{S1,S3}, {S1,83}, {{S1,S3}}, 0 }
® g={S1, S3}
a = a
s = {S2}
» since move(d,{S1, S3},a) = {S2}
» and e-closure(d,{S2}) = {S2}
® F =0
» Since {S2} N {S3} =
> where{s =}{82{} ar}md Iib= {S3} DFA

o M'=M U (0 {S2}}, 0, 0. {{S1,53},a,{S2})})
+ ={Z{S1.83)482) {81 53} ({51,831 {({S1,S3},a,{82})}}

CMSC 330 Spring 2018 59

Redux: DFA to NFA Example 1 (cont)

o M ={5, {{S1,S3},{S2}}, {S1,S3}, {{S1,S3}}, {({S1,S3},a,{S2})} }
®q =152 NFA
®a=>h
® s = {S3}

» since move(0,{S2},b) = {S3}

» and e-closure(5,{S3}) = {S3}
o F' ={{S3}}

> Since {S3} N {S3} = {S3}

> where s = {S3} and F = {S3} DFA

)@@
o =M U

(@, {{S3}}, @, {{S3}}, {({S2},b{S3h})
= { ¥, {{S1,S3},{S2}.{S3}}, {S1,S3}, {{S1,S3}{S3}}, {({S1,S3},a,{S2}), ({S2},b,{S3})} }
’ do’ F’ 5

CMSC 330 Spring 2018 60

Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?
e Each DFA state is a subset of the set of NFA states
* Given NFA with n states, DFA may have 2" states

» Since a set with n items may have 2" subsets

* Corollary
» Reducing a NFA with n states may be O(2")

CMSC 330 61

Reducing DFA to RE

can
reduce

DFA < NFA

can transform can transform

RE

Reducing DFAs to REs

» General idea

* Remove states one by one, labeling transitions with
regular expressions

* When two states are left (start and final), the
transition label is the regular expression for the DFA

CMSC 330

ablba

63

DFA to RE example

Language overX = {0,1} such that every string is a
multiple of 3 in binary

DFA to RE example

Language overX = {0,1} such that every string is a
multiple of 3 in binary

SRS <

1 0 New-Final State

o= :
of G
:8 1 0

0 ‘ 1
8 * *
: 2 1 Starting State Final State

0+1(01 0)1)

Other Topics

» Minimizing DFA
* Hopcroft reduction

» Complementing DFA
» Implementing DFA

CMSC 330

66

Minimizing DFAs

» Every regular language is recognizable by a
unigue minimum-state DFA

* |gnoring the particular names of states

» |In other words

* For every DFA, there is a unique DFA with minimum
number of states that accepts the same language

CMSC 330 67

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
» End up in different accept / non-accept state with identical input

» Algorithm

* Construct initial partition
» Accepting & non-accepting states

* |teratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to
different partitions for same input

- Two states x, y belong in same partition if and only if for all
symbols in 2 they transition to the same partition

e Update transitions & remove dead states

CMSC 330 68

Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

4 P P2\

CMSC 330

69

Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S,T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

CMSC 330 \. J/

70

Resplitting Partitions

» Need to reexamine partitions after splits
* |nitially no need to split partition {S, T,U}

* After splitting partition {X,Y} into {X}, {Y} we need to split
partition {S,T,U} into {S, T}, {U}

CMSC 330 71

Minimizing DFA: Example 1

» DFA

» Initial partitions

» Split partition

CMSC 330

72

Minimizing DFA: Example 1

» DFA

» Initial partitions

« Accept {R} = P1
* Reject {S, T} = P2

» Split partition? — Not required, minimization done
* move(S,a) =T e P2 — move(S,b) =R e P1

* move(T,a) =T e P2 —move (T,b) =R € P1

CMSC 330 73

Minimizing DFA: Example 2

CCCCCCC

Minimizing DFA: Example 2

» DFA
DFA
» Initial partitions already
« Accept {R} = P1 minimal
* Reject {S, T} = P2
» Split partition? — Yes, different partitions for B
* move(S,a) =T e P2 —move(S,b) =T € P2

* move(T,a) =T e P2 —move (T,b) =R e P1

CMSC 330 75

Minimizing DFA: Example 3

Minimizing DFA: Example 3

Complement of DFA

» Given a DFA accepting language L

* How can we create a DFA accepting its complement?

 Example DFA
» 2 = {a,b}

d

lo@B O

b

CMSC 330 78

Complement of DFA

» Algorithm
* Add explicit transitions to a dead state

* Change every accepting state to a non-accepting state
& every non-accepting state to an accepting state

» Note this only works with DFAs
* Why not with NFAs?

CMSC 330 79

Implementing DFAs (one-off)

cur_state = 0;
while (1) {

It's easy to build symbol = getohar ()
a program WhiCh switch (cur_state) {

mimiCS a DFA case 0: switch (symbol) {
case '0': cur_state = 0; break;
case 'l': cur state = 1; break;
case '\n': pri;tf("rejected\n"); return O;
1 default: printf ("rejected\n"); return O;
\ \
break;
<::::> case 1: switch (symbol) {
case '0': cur state = 0; break;
0 case 'l1l': cur:state = 1; break;

case '\n': printf("accepted\n"); return 1
default: printf ("rejected\n"); return 0

0 1 } '

break;

default: printf ("unknown state; I'm confused\n");
break;

CMSC 330 80

Implementing DFASs (generic)

More generally, use generic table-driven DFA

given components (2, Q, g, F, 0) of a DFA:

let g = qo

while (there exists another symbol s of the input string)
q:=4(q, s);

if g € Fthen
accept

else reject

* gisjust an integer
* Represent 6 using arrays or hash tables
* Represent F as a set

CMSC 330

81

Running Time of DFA

» How long for DFA to decide to accept/reject string s?
* Assume we can compute 6(q, ¢) in constant time

* Then time to process s is O(|s|)
» Can’t get much faster!

» Constructing DFA for RE A may take O(2A1) time

* But usually not the case in practice

» S0 there's the initial overhead
* But then processing strings is fast

CMSC 330 82

Regular Expressions in Practice

» Regular expressions are typically “compiled” into
tables for the generic algorithm
* Can think of this as a simple byte code interpreter
* But really just a representation of (2, Qa, da, {fa}, 04a),
the components of the DFA produced from the RE
» Regular expression implementations often have
extra constructs that are non-regular
* |.e., can accept more than the regular languages
* Can be useful in certain cases

* Disadvantages
» Nonstandard, plus can have higher complexity

CMSC 330 83

Summary of Regular Expression Theory

» Finite automata
 DFA, NFA

» Equivalence of RE, NFA, DFA
e RE — NFA

> Concatenation, union, closure

* NFA — DFA

» g-closure & subset algorithm

» DFA

* Minimization, complement
* Implementation

CMSC 330 84

