CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

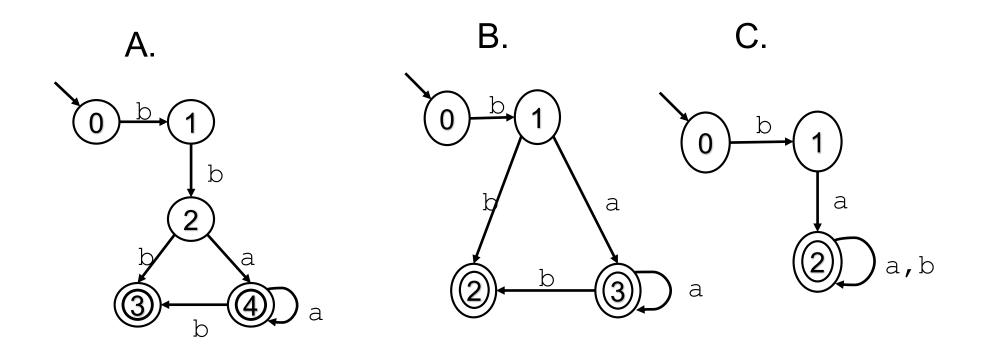
CMSC330 Fall 2018

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Quiz 1: Which DFA matches this regexp?

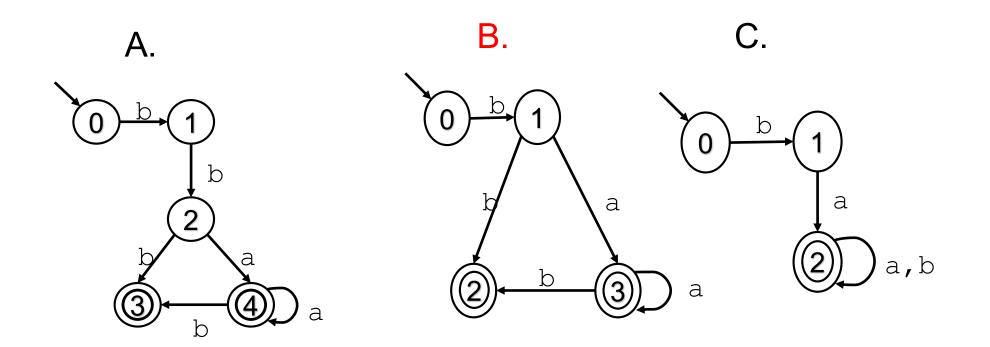
b(b|a+b?)



D. None of the above

Quiz 1: Which DFA matches this regexp?

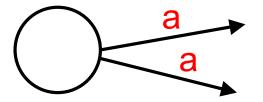
b(b|a+b?)



D. None of the above

Comparing DFAs and NFAs

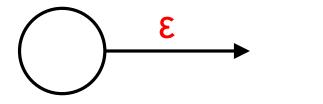
NFAs can have more than one transition leaving a state on the same symbol



- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

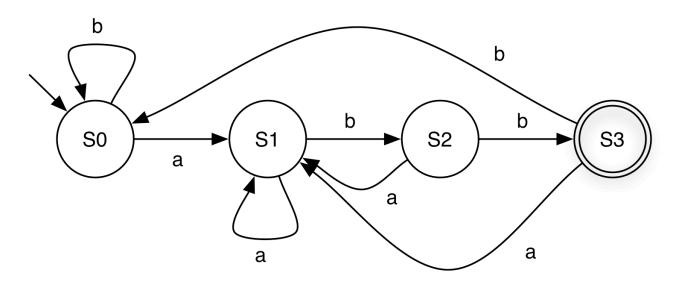
- NFAs may have transitions with empty string label
 - May move to new state without consuming character



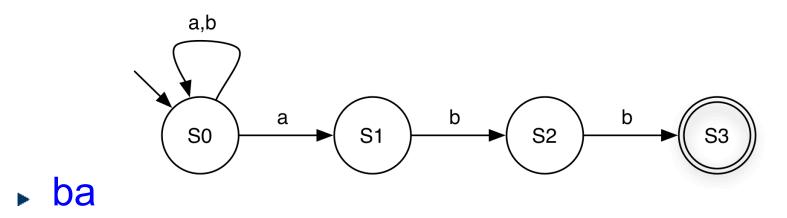
 ϵ -transition

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

DFA for (a|b)*abb

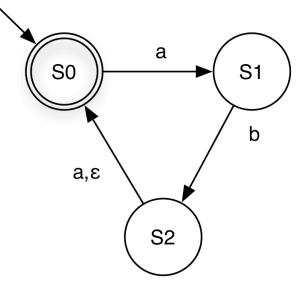


NFA for (a|b)*abb



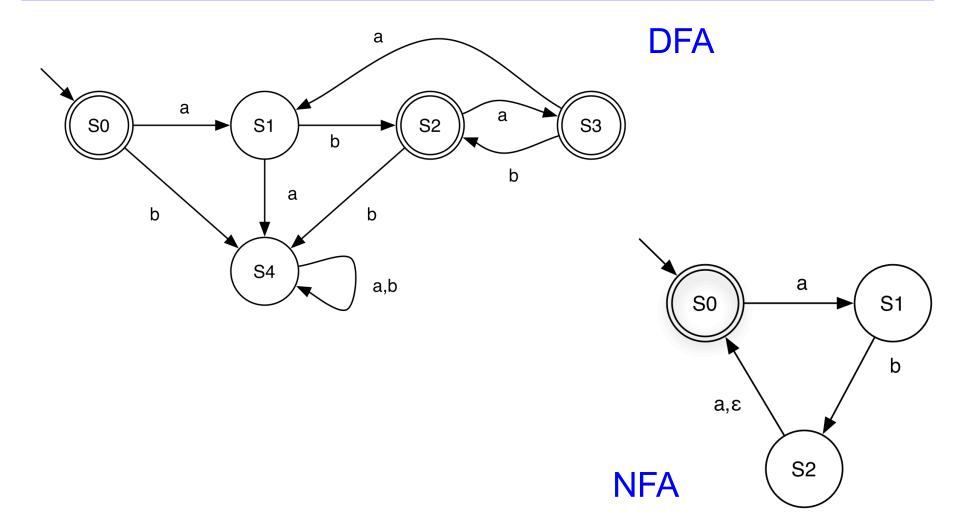
- Has paths to either S0 or S1
- Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*



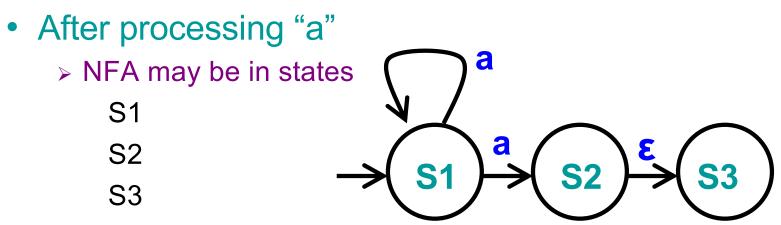
- ► aba
 - Has paths to states S0, S1
- ▶ ababa
 - Has paths to S0, S1
 - Need to use ϵ -transition

Comparing NFA and DFA for (ab|aba)*



NFA Acceptance Algorithm Sketch

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - > Due to multiple transitions with same label
 - ε-transitions
 - If any current state is final when done then accept s
- Example

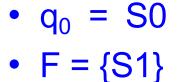


Formal Definition

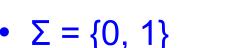
- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - δ: Q x Σ → Q specifies the DFA's transitions
 > What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

or as { (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) }

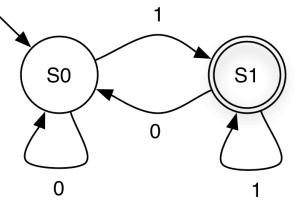
•	symbol		
_	δ	0	1
input state	S0	S0	S1
input	S1	S0	S1



- Q = {S0, S1}
- $\Sigma = \{0, 1\}$

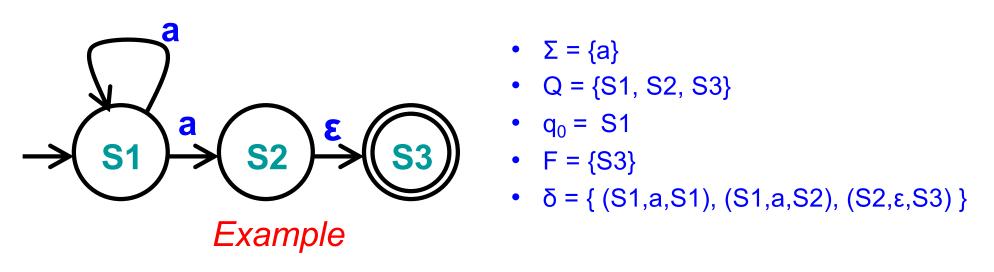


Formal Definition: Example



Nondeterministic Finite Automata (NFA)

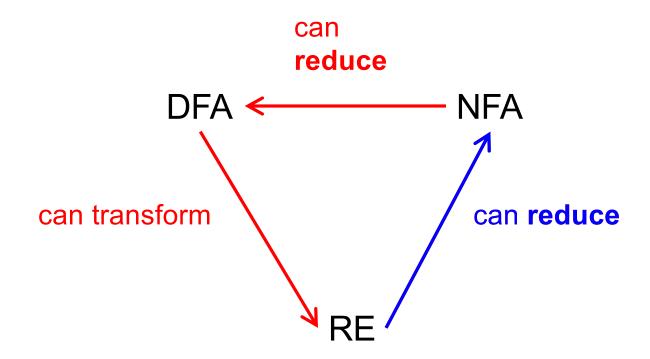
- An NFA is a 5-tuple (Σ , Q, q₀, F, δ) where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \ge \{\Sigma \cup \{\epsilon\}\} \ge Q \ge \{\epsilon\}$ and $\Sigma \cup \{\epsilon\}$ is the NFA's transitions



An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages!

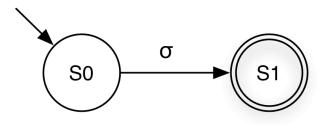


Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct
 NFA: <A> = (Σ, Q, q₀, F, δ)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - Recall F = set of final states
- Will define $\langle A \rangle$ for base cases: σ , ϵ , ϕ
 - Where σ is a symbol in Σ
- And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

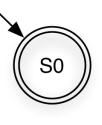
Base case: σ



 $<\sigma> = ({\sigma}, {S0, S1}, S0, {S1}, {(S0, \sigma, S1)})$

Reduction

Base case: ε



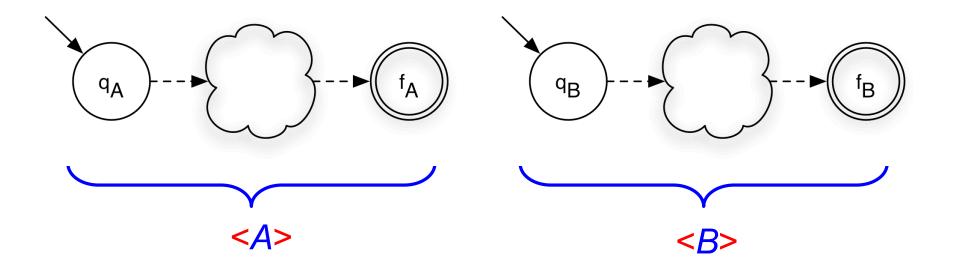
 $<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

Base case: Ø

<Ø> = (Ø, {S0, S1}, S0, {S1}, Ø)

Reduction: Concatenation

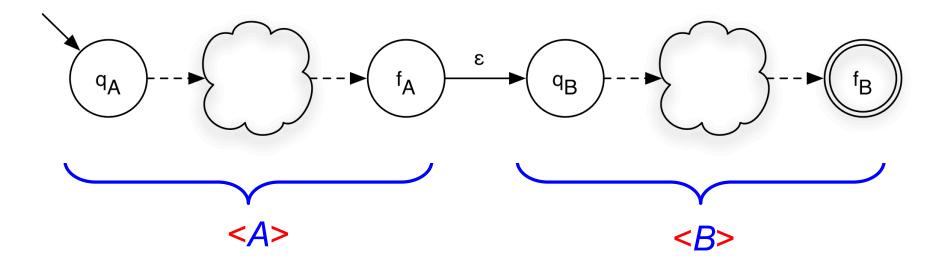
Induction: AB



- $<\!\!A\!\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- **<***B***>** = (Σ_B , Q_B , q_B , {f_B}, δ_B)

Reduction: Concatenation

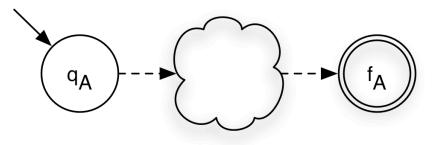
Induction: AB

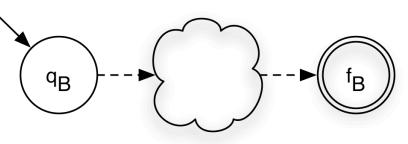


- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

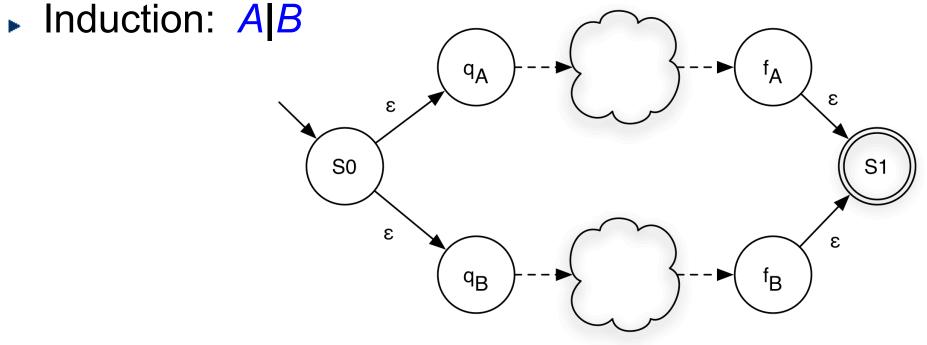
Induction: A|B





- $<\!\!A\!\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- **<***B***>** = (Σ_B , Q_B , q_B , {f_B}, δ_B)

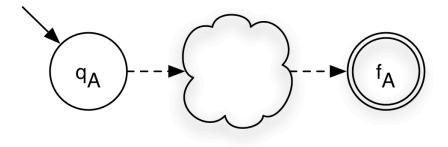
Reduction: Union



- $<\!\!A\!\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- <A B> = ($\Sigma_A \cup \Sigma_B$, $Q_A \cup Q_B \cup \{S0,S1\}$, S0, {S1}, $\delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\}$)

Reduction: Closure

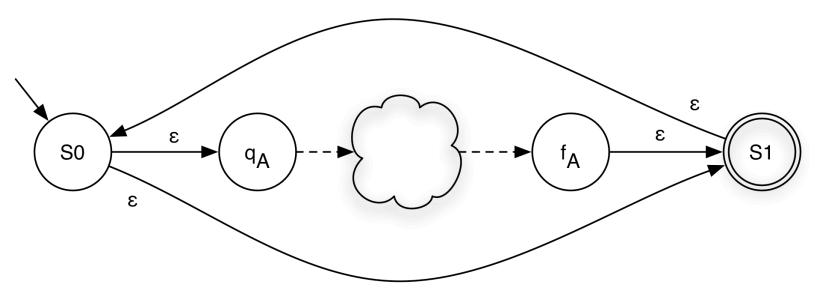
Induction: A*



• $<\!\!A\!\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

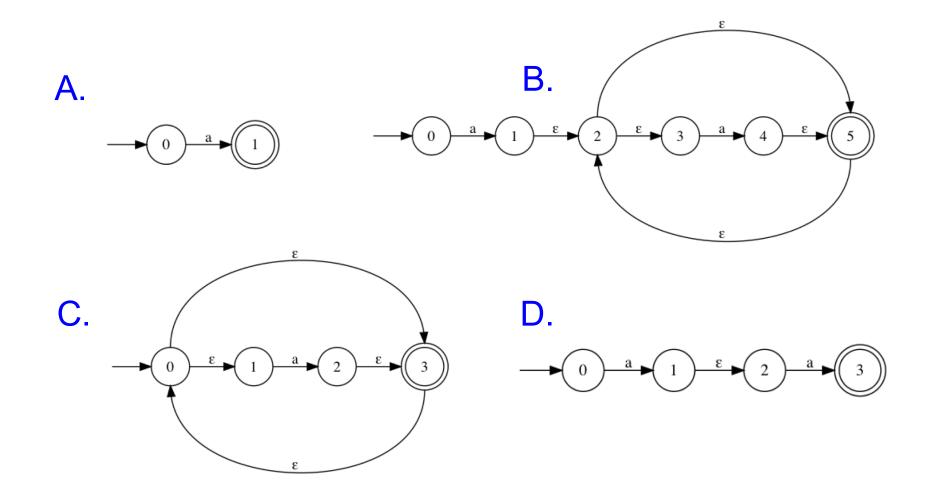
Reduction: Closure

Induction: A*

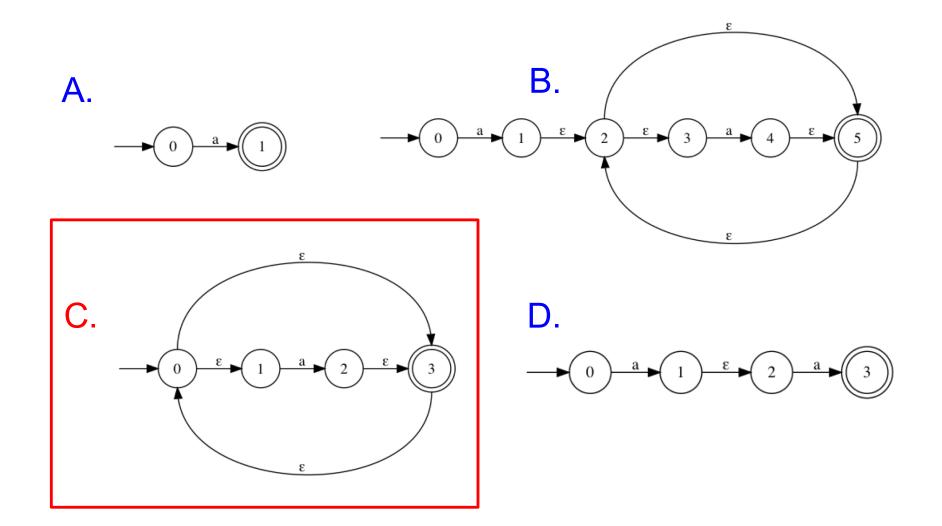


- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \{(f_A, \epsilon, S1), (S0, \epsilon, q_A), (S0, \epsilon, S1), (S1, \epsilon, S0)\})$

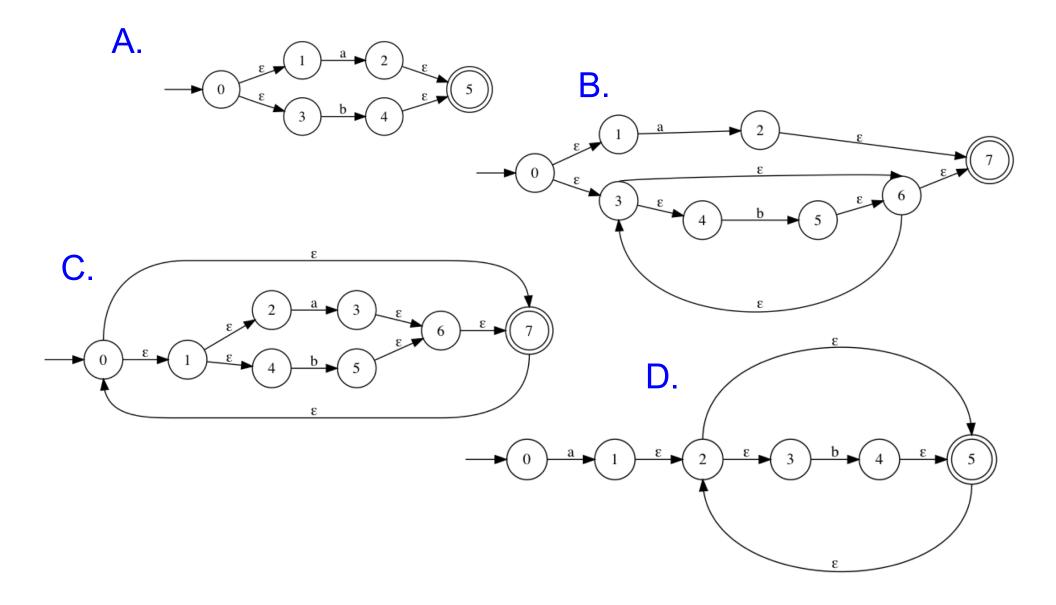
Quiz 2: Which NFA matches a* ?



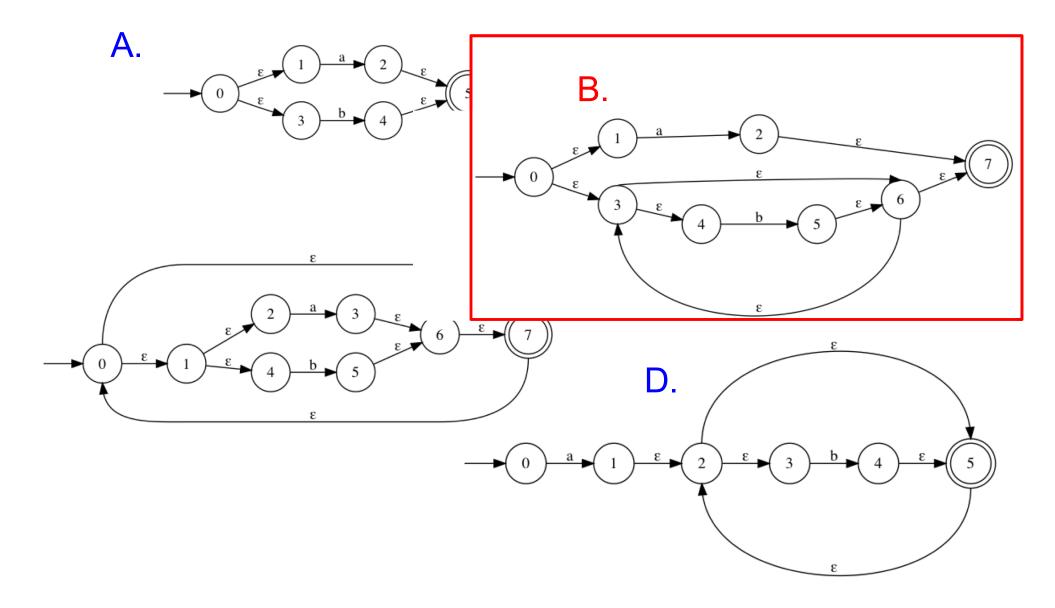
Quiz 2: Which NFA matches a* ?



Quiz 3: Which NFA matches a|b*?



Quiz 3: Which NFA matches a|b*?



$\mathsf{RE}\to\mathsf{NFA}$

Draw NFAs for the regular expression (0|1)*110*

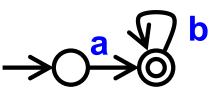
Draw NFAs for the regular expression (ab*c|d*a|ab)d

Reduction Complexity

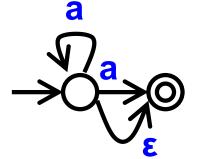
- Given a regular expression A of size n...
 Size = # of symbols + # of operations
- How many states does <A> have?
 - Two added for each , two added for each *
 - O(n)
 - That's pretty good!

Recap

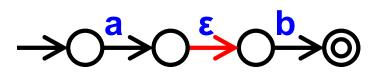
- Finite automata
 - Alphabet, states...
 - (Σ , Q, q_0 , F, δ)
- Types
 - Deterministic (DFA)



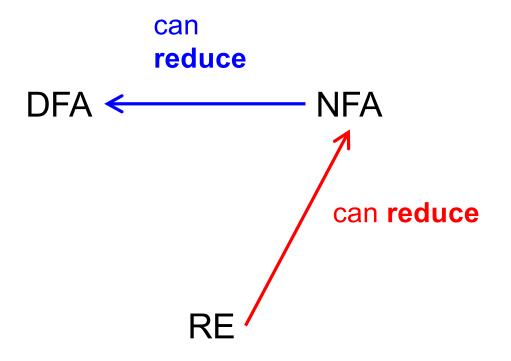
• Non-deterministic (NFA)



- Reducing RE to NFA
 - Concatenation



Reducing NFA to DFA

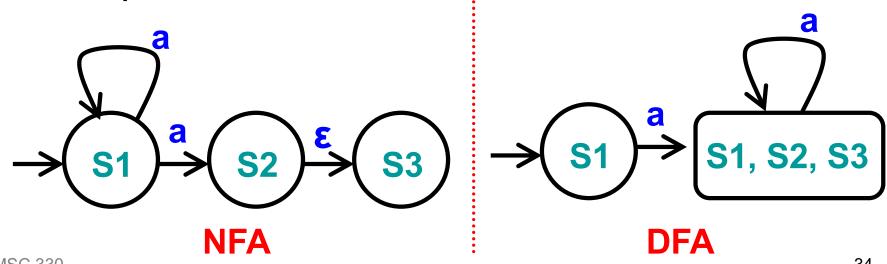


Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where

> Each DFA state represents a set of NFA "current states"

Example



Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - > NFA (Σ, Q, q₀, F_n, δ)
 - Output
 - > DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - > ϵ -closure(δ , p) (and ϵ -closure(δ , S))
 - > move(δ , p, a) (and move(δ , S, a))

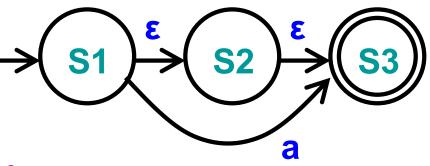
ε-transitions and ε-closure

- We say p [≥]→ q
 - If it is possible to go from state p to state q by taking only $\epsilon\text{-transitions}$ in δ
 - If $\exists p, p_1, p_2, \dots p_n, q \in Q$ such that $\geq \{p, \epsilon, p_1\} \in \delta, \{p_1, \epsilon, p_2\} \in \delta, \dots, \{p_n, \epsilon, q\} \in \delta$
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that $p \xrightarrow{\epsilon} q$ according to δ
 - > ϵ -closure(δ , p) = {q | p $\xrightarrow{\epsilon}$ q in δ }
 - ≻ ε-closure(δ , Q) = { q | p ∈ Q, p $\xrightarrow{\epsilon}$ q in δ }
 - Notes
 - > ϵ -closure(δ , p) always includes p
 - > We write ϵ -closure(p) or ϵ -closure(Q) when δ is clear from context

ε-closure: Example 1

Following NFA contains

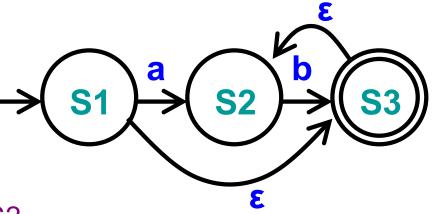
- $S1 \xrightarrow{\epsilon} S2$
- S2 $\xrightarrow{\epsilon}$ S3
- $S1 \xrightarrow{\epsilon} S3$ > Since $S1 \xrightarrow{\epsilon} S2$ and $S2 \xrightarrow{\epsilon} S3$



- ε-closures
 - ε-closure(S1) = { S1, S2, S3 }
 - ε-closure(S2) = { S2, S3 }
 - ε-closure(S3) = { S3 }
 - ε-closure({S1, S2}) = {S1, S2, S3} ∪ {S2, S3}

ε-closure: Example 2

- Following NFA contains
 - $S1 \xrightarrow{\epsilon} S3$
 - S3 $\xrightarrow{\epsilon}$ S2
 - $S1 \xrightarrow{\epsilon} S2$ > Since $S1 \xrightarrow{\epsilon} S3$ and $S3 \xrightarrow{\epsilon} S2$



- ε-closures
 - ϵ -closure(S1) = { S1, S2, S3 }
 - ε-closure(S2) = { S2 }
 - ε-closure(S3) = { S2, S3 }
 - ε-closure({ S2,S3 }) = { S2 } ∪ { S2, S3 }

ε-closure Algorithm: Approach

- ▶ Input: NFA (Σ, Q, q_0 , F_n , δ), State Set R
- Output: State Set R'
- Algorithm

```
Let R' = R
```

Repeat

Let R = R'

Let R' = R \cup {q | p \in R, (p, ε , q) \in δ }

Until R = R'

// start states

// continue from previous
// new ε-reachable states
// stop when no new states

This algorithm computes a fixed point

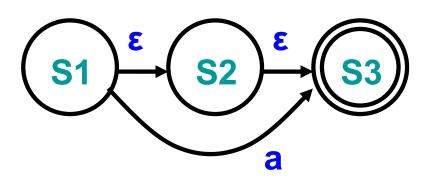
see note linked from project description

ε-closure Algorithm Example

Calculate ε-closure(δ,{S1})

R'
{S1}
{S1, S2}
{S1, S2, S3}

{S1, S2, S3} {S1, S2, S3}



Let R' = R Repeat Let R= R' Let R' = R \cup {q | p \in R, (p, ε , q) \in δ } Until R = R'

Calculating move(p,a)

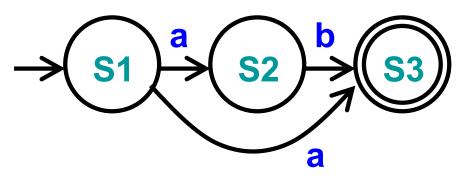
- move(δ,p,a)
 - Set of states reachable from p using exactly one transition on a
 - \succ Set of states q such that {p, a, q} $\in \delta$
 - $\succ move(\delta,p,a) = \{ q \mid \{p, a, q\} \in \delta \}$
 - $\succ move(\delta,Q,a) = \{ q \mid p \in Q, \{p, a, q\} \in \delta \}$
 - i.e., can "lift" move() to start from a set of states Q

• Notes:

- > move(δ ,p,a) is Ø if no transition (p,a,q) ∈ δ , for any q
- > We write move(p,a) or move(R,a) when δ clear from context

move(a,p) : Example 1

- Following NFA
 - Σ = { a, b }

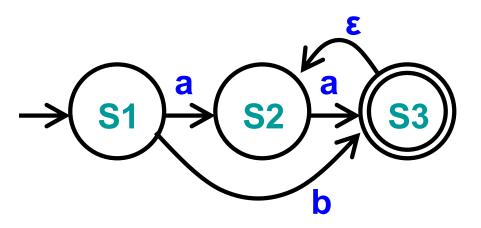


- Move
 - move(S1, a) = { S2, S3 }
 - move(S1, b) = \emptyset
 - move(S2, a) = Ø
 - move(S2, b) = { S3 }
 - move(S3, a) = Ø
 - move(S3, b) = Ø

move({S1,S2},b) = { S3 }

move(a,p) : Example 2

- Following NFA
 - Σ = { a, b }
- Move
 - move(S1, a) = { S2 }
 - move(S1, b) = { S3 }
 - move(S2, a) = { S3 }
 - move(S2, b) = Ø
 - move(S3, a) = Ø
 - move(S3, b) = Ø



 $move({S1,S2},a) = {S2,S3}$

NFA → DFA Reduction Algorithm ("subset")

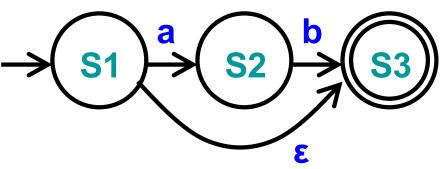
- ▶ Input NFA (Σ, Q, q₀, F_n, δ), Output DFA (Σ, R, r₀, F_d, δ')
- Algorithm

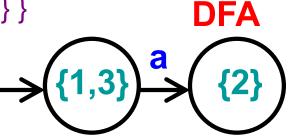
```
Let r_0 = \varepsilon-closure(\delta,q_0), add it to R
While \exists an unmarked state \mathbf{r} \in \mathbf{R}
      Mark r
      For each a \in \Sigma
             Let E = move(\delta, r, a)
             Let e = \varepsilon-closure(\delta,E)
             lf e ∉ R
                   Let R = R \cup \{e\}
             Let \delta' = \delta' \cup \{r, a, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

- // DFA start state
- // process DFA state r
- // each state visited once
- // for each letter a
- // states reached via a
- // states reached via $\boldsymbol{\epsilon}$
- // if state e is new
- // add e to R (unmarked)
- // add transition $r \rightarrow e$
- // final if include state in ${\sf F}_{\sf n}$

$NFA \rightarrow DFA Example 1$

- Start = ε -closure(δ ,S1) = { {S1,S3} } NFA
- R = { {S1,S3} }
- $r \in R = \{S1, S3\}$
- move(δ,{S1,S3},a) = {S2}
 - \succ e = ε -closure(δ ,{S2}) = {S2}
 - $\succ R = R \cup \{\!\{S2\}\!\} = \{\,\{S1,S3\},\,\{S2\}\,\}$
 - $\succ \delta' = \delta' \cup \{\{S1,S3\}, a, \{S2\}\}$
- move(δ ,{S1,S3},b) = Ø





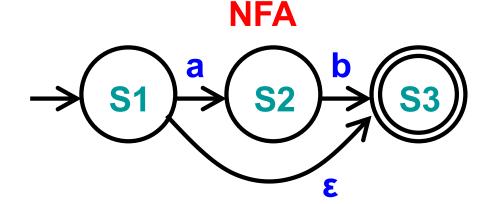
NFA \rightarrow DFA Example 1 (cont.)

- R = { {S1,S3}, {S2} }
- $r \in R = \{S2\}$
- move(δ,{S2},a) = Ø
- move(δ,{S2},b) = {S3}

ightarrow e = ε -closure(δ ,{S3}) = {S3}

▷ R = R ∪ {{S3}} = { {S1,S3}, {S2}, {S3} }

$$\succ \delta' = \delta' \cup \{\{S2\}, b, \{S3\}\}$$



DFA

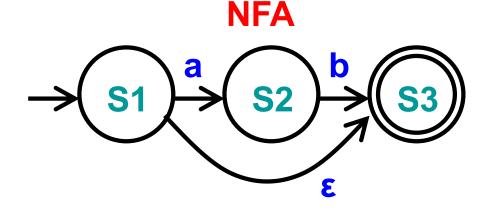
{2}

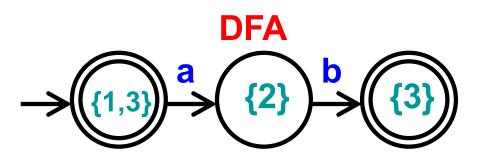
a

b

NFA \rightarrow DFA Example 1 (cont.)

- R = { {S1,S3}, {S2}, {S3} }
- $r \in R = \{S3\}$
- Move({S3},a) = Ø
- Move({S3},b) = Ø
- Mark {S3}, exit loop
- F_d = {{S1,S3}, {S3}}
 ≻ Since S3 ∈ F_n
- Done!

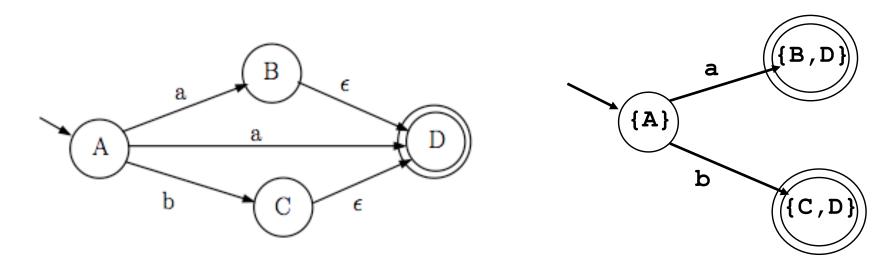




NFA \rightarrow DFA Example 2

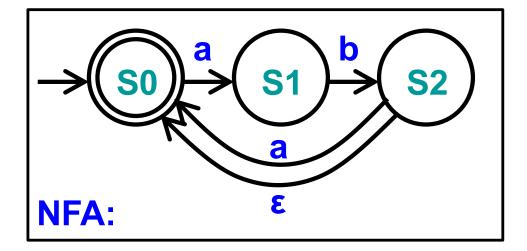
► NFA

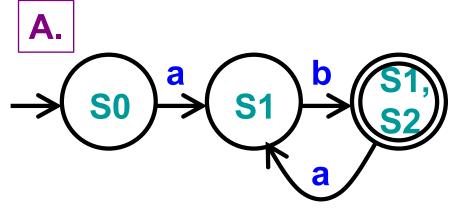
DFA

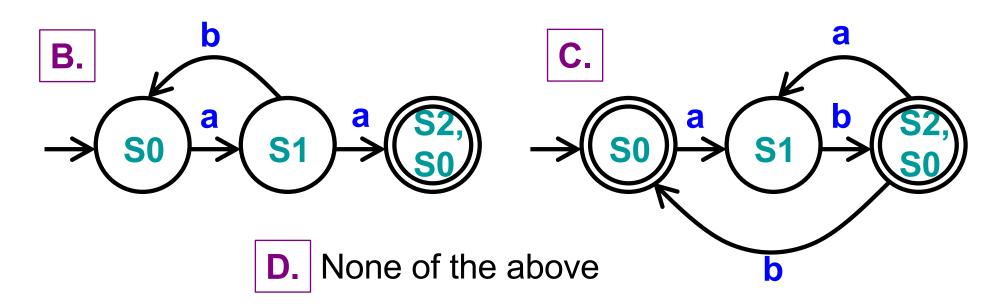


$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

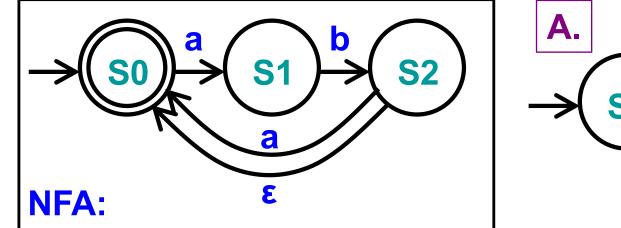
Quiz 4: Which DFA is equiv to this NFA?

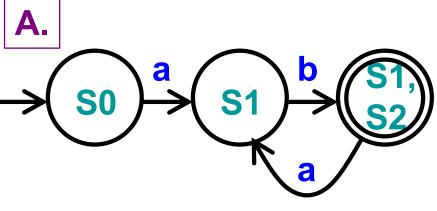


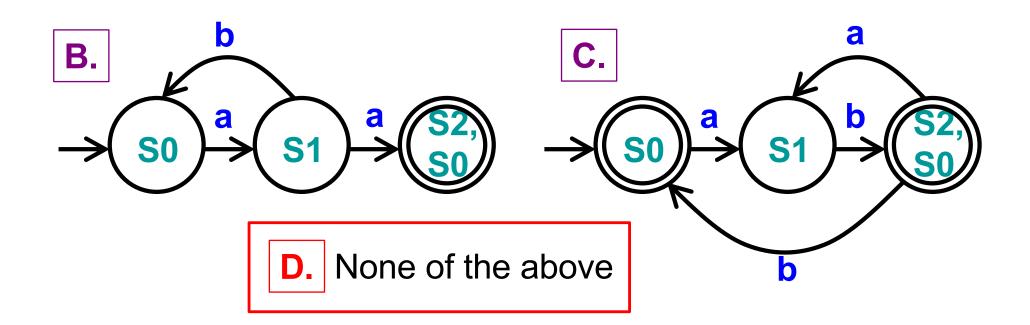




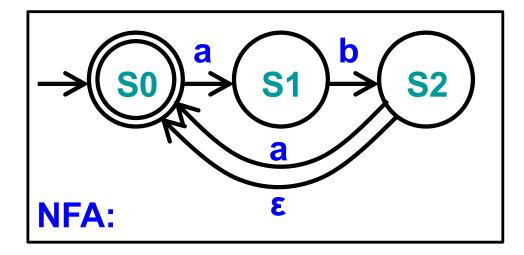
Quiz 4: Which DFA is equiv to this NFA?

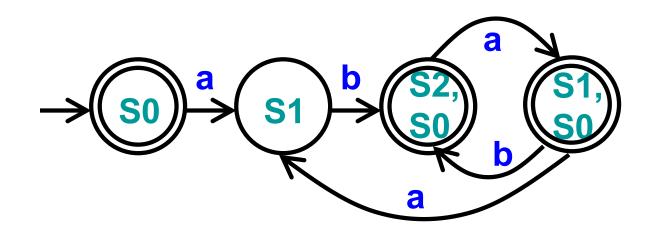




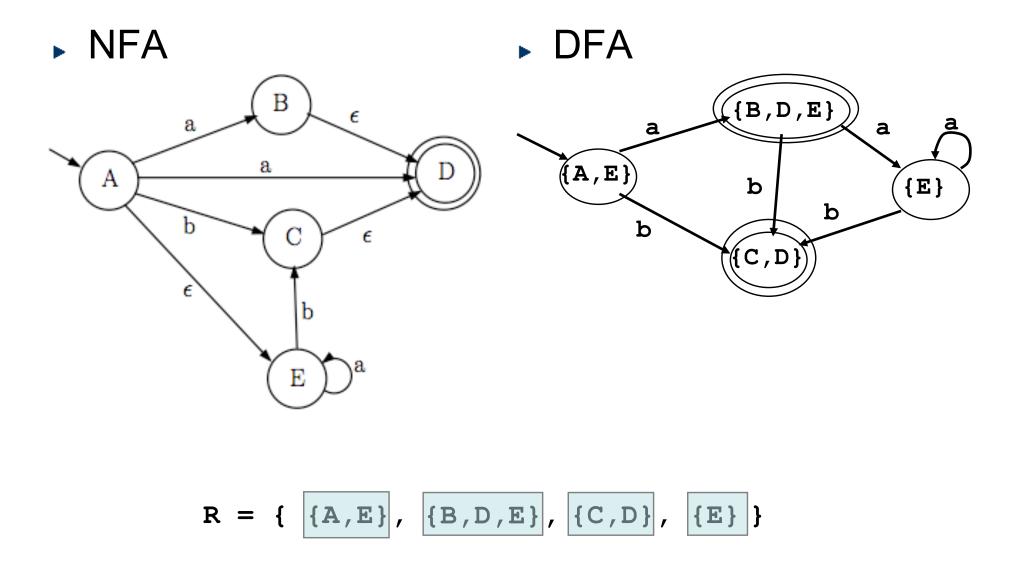


Actual Answer

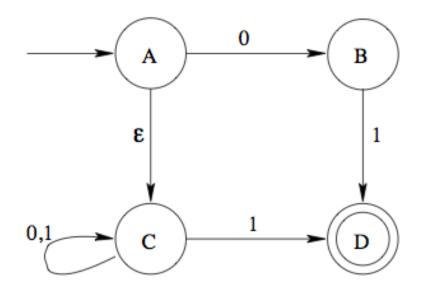


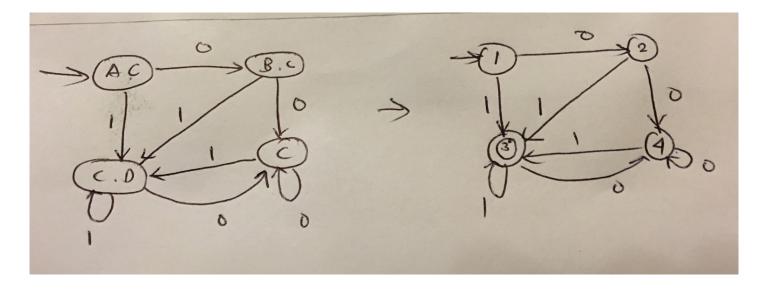


NFA \rightarrow DFA Example 3

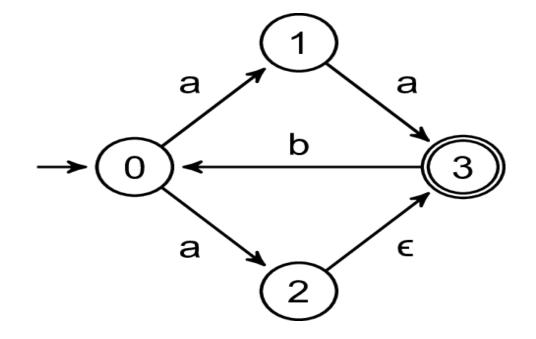


$NFA \rightarrow DFA Example$

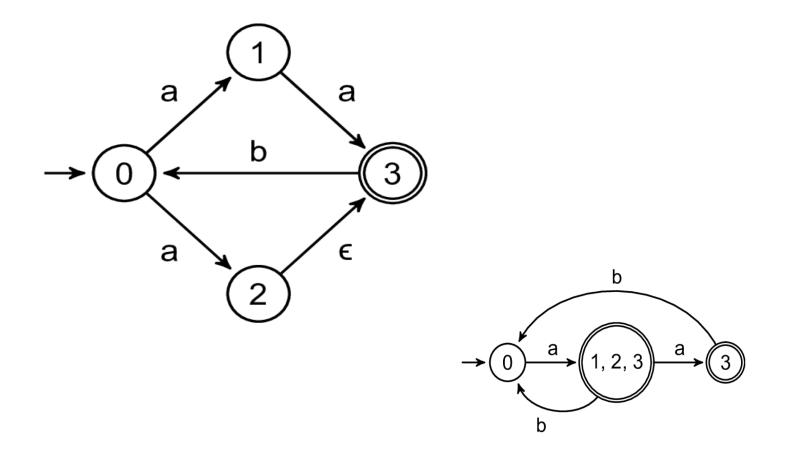




NFA → DFA Practice

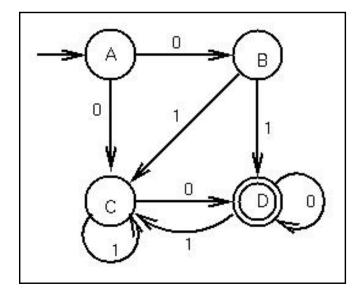


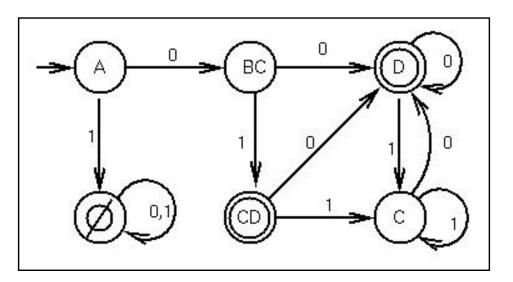
NFA → DFA Practice



Analyzing the reduction

- Any string from {A} to either {D} or {CD}
 - Represents a path from A to D in the original NFA





NFA

DFA

Subset Algorithm as a Fixed Point

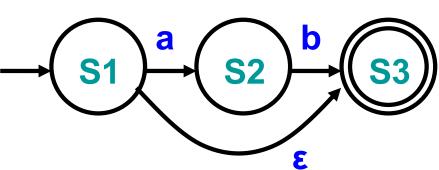
- Input: NFA (Σ, Q, q₀, F, δ)
- ► Output: DFA M'

Algorithm

```
Let q_0' = \epsilon-closure(\delta, q_0)
  Let F' = \{q_0'\} if q_0' \cap F \neq \emptyset, or \emptyset otherwise
  Let M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)
                                                              // starting approximation of
      DFA
  Repeat
        Let M = M'
                                                   // current DFA approx
        For each q \in states(M), a \in \Sigma // for each DFA state q and letter a
             Let s = \varepsilon-closure(\delta, move(\delta, q, a)) // new subset from q
             Let F' = {s} if s \cap F \neq \emptyset, or \emptyset otherwise, // subset contains final?
             M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, a, s)\}) // update DFA
                                                   // reached fixed point
  Until M' = M
CMSC 330 Spring 2018
                                                                                             57
```

Redux: DFA to NFA Example 1

- $q_0' = \epsilon$ -closure(δ ,S1) = {S1,S3}
- $F' = \{\{S1, S3\}\} \text{ since } \{S1, S3\} \cap \{S3\} \neq \emptyset$

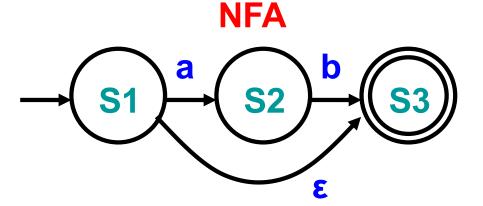


DFA

NFA

Redux: DFA to NFA Example 1 (cont)

- M' = { Σ, {{S1,S3}}, {S1,S3}, {{S1,S3}}, Ø }
 - q = {S1, S3}
 - a = a
 - s = {S2}
 - > since move(δ ,{S1, S3},a) = {S2}
 - > and ε -closure(δ ,{S2}) = {S2}
 - F' = Ø
 - > Since {S2} ∩ {S3} = Ø
 - \succ where s = {S2} and F = {S3}



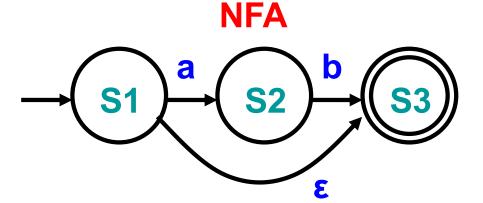
DFA

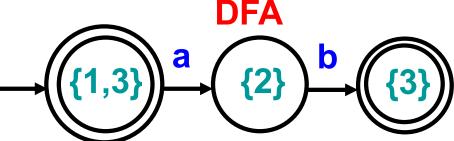
a

 $= \{ \sum_{\substack{\{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}, \{\{S1,S3\}, \{\{\{S1,S3\},a,\{S2\}\}\}\} \\ Q' \qquad q_0' \qquad F' \qquad \delta' \qquad 59} \}$ CMSC 330 Spring 2018

Redux: DFA to NFA Example 1 (cont)

- $M' = \{ \Sigma, \{\{S1,S3\}, \{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{(\{S1,S3\},a,\{S2\})\} \}$
 - q = {S2}
 - a = b
 - s = {S3}
 - > since move(δ ,{S2},b) = {S3}
 - > and ε -closure(δ ,{S3}) = {S3}
 - F' = {{S3}}
 - > Since {S3} ∩ {S3} = {S3}
 - > where s = {S3} and F = {S3}



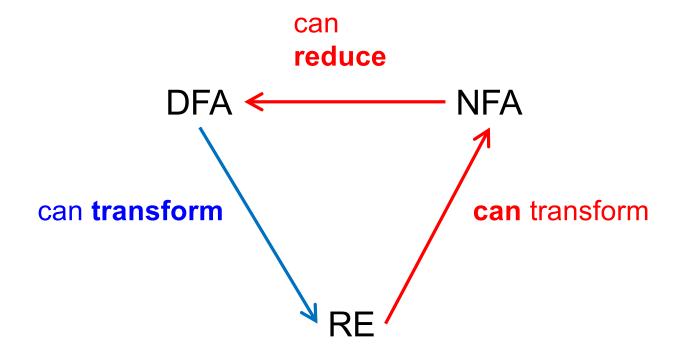


 $\begin{pmatrix} \emptyset, \{\{S3\}\}, \emptyset, \{\{S3\}\}, \{(\{S2\}, b, \{S3\}\}) \\ = \{ \Sigma, \{\{S1, S3\}, \{S2\}, \{S3\}\}, \{S1, S3\}, \{\{S1, S3\}, \{S3\}\}, \{(\{S1, S3\}, a, \{S2\}), (\{S2\}, b, \{S3\})\} \\ Q' \qquad Q' \qquad F' \qquad \delta' \qquad 60$

Analyzing the Reduction

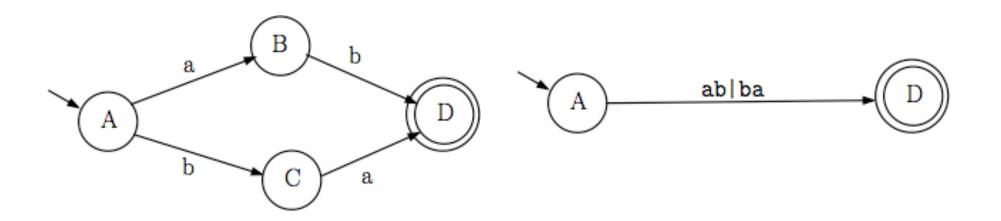
- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2ⁿ)

Reducing DFA to RE



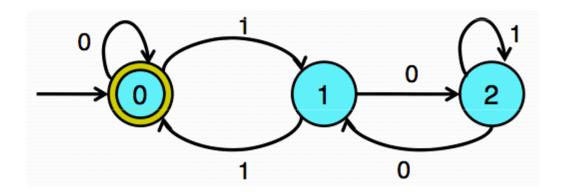
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA



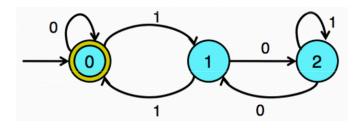
DFA to RE example

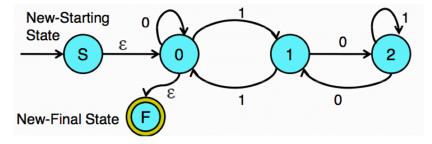
Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

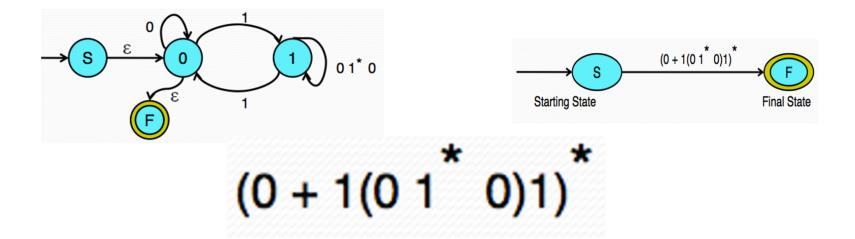


DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary





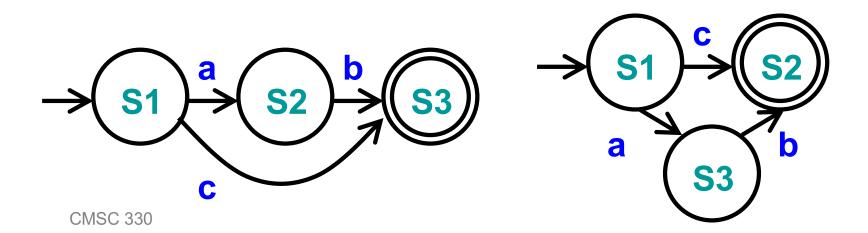


Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language



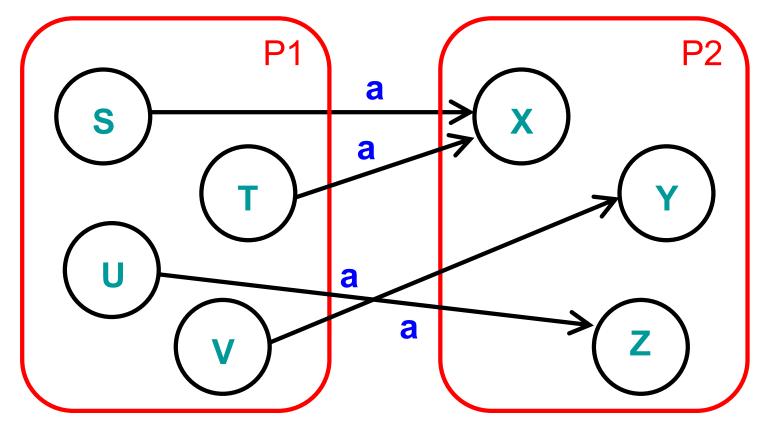
J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - > Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

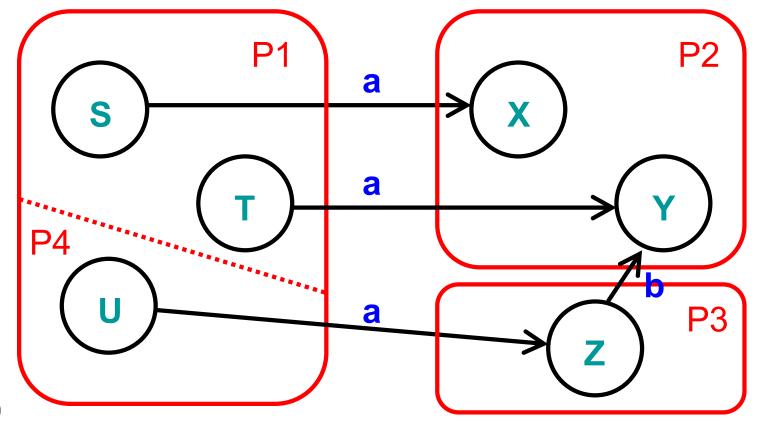
- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states



CMSC 330

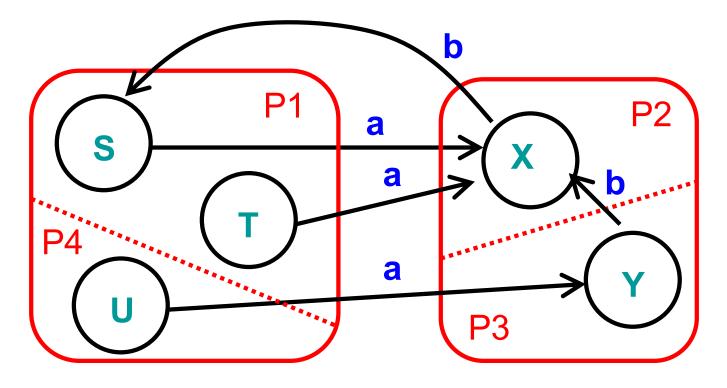
Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

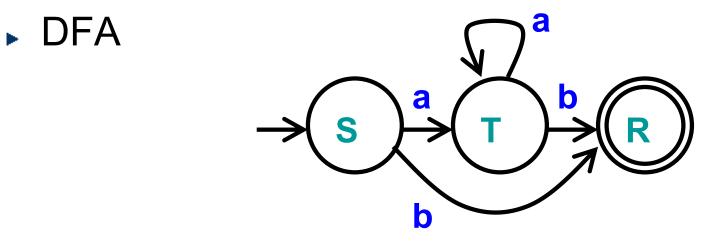


Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

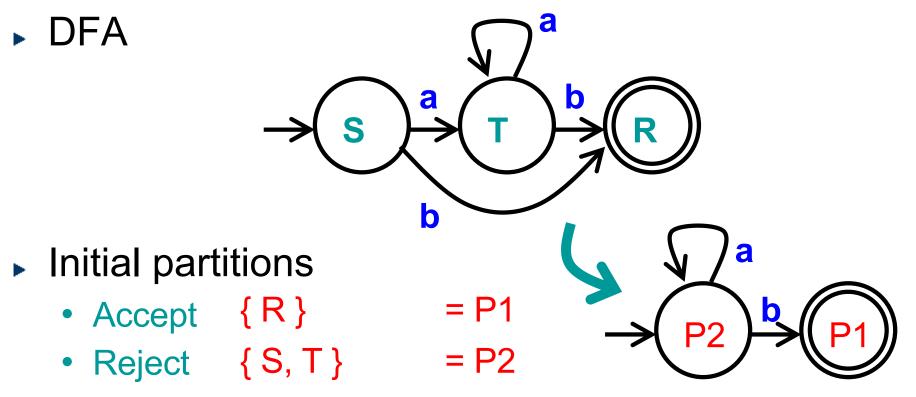


Minimizing DFA: Example 1



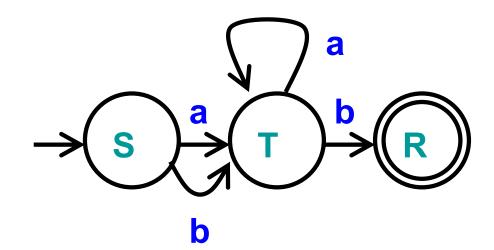
Initial partitions

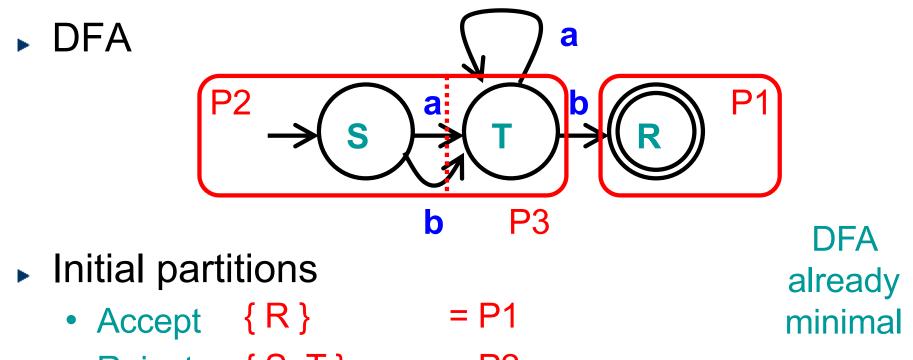
Split partition



- ▶ Split partition? \rightarrow Not required, minimization done

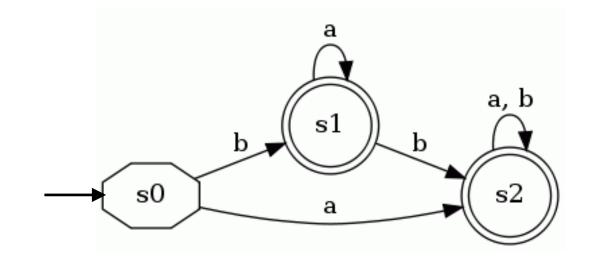
 - move(T,a) = $T \in P2$ move (T,b) = $R \in P1$
 - move(S,a) = $T \in P2$ move(S,b) = $R \in P1$

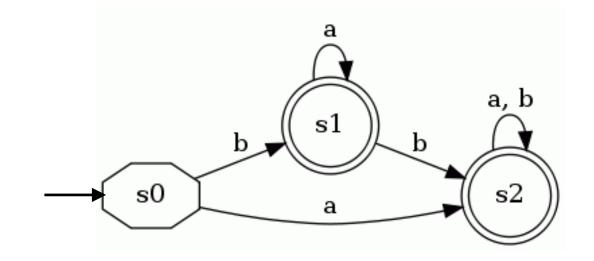


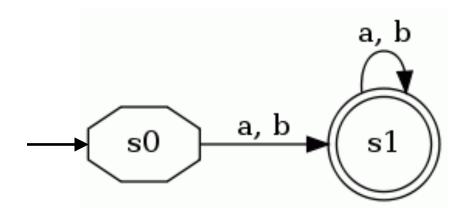


- Reject { S, T } = P2
- Split partition? \rightarrow Yes, different partitions for B

 - move(T,a) = $T \in P2$ move (T,b) = $R \in P1$
 - $move(S,a) = T \in P2$ $-move(S,b) = T \in P2$
- **CMSC 330**



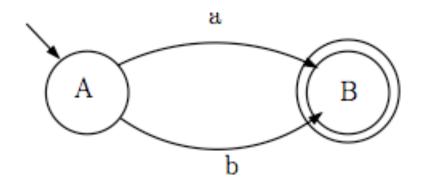




Complement of DFA

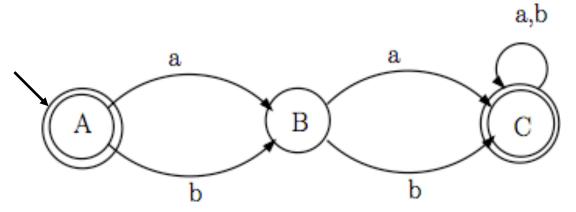
- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

≻ Σ = {a,b}



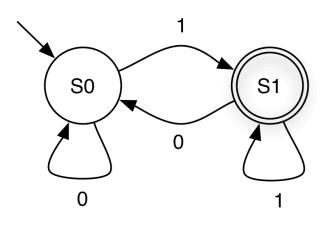
Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?



Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA



```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
            }
            break;
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
                         printf("rejected\n"); return 0;
              default:
            }
            break;
    default: printf("unknown state; I'm confused\n");
             break;
  }
```

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q<sub>0</sub>, F, \delta) of a DFA:
let q = q<sub>0</sub>
while (there exists another symbol s of the input string)
q := \delta(q, s);
if q \in F then
accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing DFA for RE A may take O(2|A|) time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - > Nonstandard, plus can have higher complexity

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - $RE \rightarrow NFA$
 - > Concatenation, union, closure
 - NFA \rightarrow DFA
 - » ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation