
CMSC 330: Organization of
Programming Languages

Introduction to Ruby

1CMSC 330 - Fall 2018

Ruby

An object-oriented, imperative, dynamically
typed (scripting) language
• Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”
• Core of Ruby on Rails web programming framework

(a key to its popularity)
• Similar in flavor to many other scripting languages

Ø Much cleaner than perl

• Full object-orientation (even primitives are objects!)

2CMSC 330 - Fall 2018

Books on Ruby

• Earlier version of Thomas book available on web
Ø See course web page

3CMSC 330 - Fall 2018

Applications of Scripting Languages

Scripting languages have many uses
• Automating system administration
• Automating user tasks
• Quick-and-dirty development

Motivating application

Text processing

4CMSC 330 - Fall 2018

Output from Command-Line Tool
% wc *

271 674 5323 AST.c
100 392 3219 AST.h
117 1459 238788 AST.o
1874 5428 47461 AST_defs.c
1375 6307 53667 AST_defs.h
371 884 9483 AST_parent.c
810 2328 24589 AST_print.c
640 3070 33530 AST_types.h
285 846 7081 AST_utils.c
59 274 2154 AST_utils.h
50 400 28756 AST_utils.o
866 2757 25873 Makefile
270 725 5578 Makefile.am
866 2743 27320 Makefile.in
38 175 1154 alloca.c

2035 4516 47721 aloctypes.c
86 350 3286 aloctypes.h
104 1051 66848 aloctypes.o

...

5CMSC 330 - Fall 2018

Climate Data for IAD in August, 2005
==
1 2 3 4 5 6A 6B 7 8 9 10 11 12 13 14 15 16 17 18

AVG MX 2MIN
DY MAX MIN AVG DEP HDD CDD WTR SNW DPTH SPD SPD DIR MIN PSBL S-S WX SPD DR
==

1 87 66 77 1 0 12 0.00 0.0 0 2.5 9 200 M M 7 18 12 210
2 92 67 80 4 0 15 0.00 0.0 0 3.5 10 10 M M 3 18 17 320
3 93 69 81 5 0 16 0.00 0.0 0 4.1 13 360 M M 2 18 17 360
4 95 69 82 6 0 17 0.00 0.0 0 3.6 9 310 M M 3 18 12 290
5 94 73 84 8 0 19 0.00 0.0 0 5.9 18 10 M M 3 18 25 360
6 89 70 80 4 0 15 0.02 0.0 0 5.3 20 200 M M 6 138 23 210
7 89 69 79 3 0 14 0.00 0.0 0 3.6 14 200 M M 7 1 16 210
8 86 70 78 3 0 13 0.74 0.0 0 4.4 17 150 M M 10 18 23 150
9 76 70 73 -2 0 8 0.19 0.0 0 4.1 9 90 M M 9 18 13 90
10 87 71 79 4 0 14 0.00 0.0 0 2.3 8 260 M M 8 1 10 210
...

6CMSC 330 - Fall 2018

Raw Census 2000 Data for DC
u108_S,DC,000,01,0000001,572059,72264,572059,12.6,572059,572059,572059,0,0,

0,0,572059,175306,343213,2006,14762,383,21728,14661,572059,527044,15861
7,340061,1560,14605,291,1638,10272,45015,16689,3152,446,157,92,20090,43
89,572059,268827,3362,3048,3170,3241,3504,3286,3270,3475,3939,3647,3525
,3044,2928,2913,2769,2752,2933,2703,4056,5501,5217,4969,13555,24995,242
16,23726,20721,18802,16523,12318,4345,5810,3423,4690,7105,5739,3260,234
7,303232,3329,3057,2935,3429,3326,3456,3257,3754,3192,3523,3336,3276,29
89,2838,2824,2624,2807,2871,4941,6588,5625,5563,17177,27475,24377,22818
,21319,20851,19117,15260,5066,6708,4257,6117,10741,9427,6807,6175,57205
9,536373,370675,115963,55603,60360,57949,129440,122518,3754,3168,22448,
9967,4638,14110,16160,165698,61049,47694,13355,71578,60875,10703,33071,
35686,7573,28113,248590,108569,47694,60875,140021,115963,58050,21654,36
396,57913,10355,4065,6290,47558,25229,22329,24058,13355,10703,70088,657
37,37112,21742,12267,9475,9723,2573,2314,760,28625,8207,7469,738,19185,
18172,1013,1233,4351,3610,741,248590,199456,94221,46274,21443,24831,479
47,8705,3979,4726,39242,25175,14067,105235,82928,22307,49134,21742,1177
6,211,11565,9966,1650,86,1564,8316,54,8262,27392,25641,1751,248590,1159
63,4999,22466,26165,24062,16529,12409,7594,1739,132627,11670,32445,2322
5,21661,16234,12795,10563,4034,248590,115963,48738,28914,19259,10312,47
48,3992,132627,108569,19284,2713,1209,509,218,125

...

7CMSC 330 - Fall 2018

A Simple Example

Let�s start with a simple Ruby program

This is a ruby program
x = 37
y = x + 5
print(y)
print("\n")

ruby1.rb:

% ruby -w ruby1.rb
42
%

8CMSC 330 - Fall 2018

Language Basics

This is a ruby program
x = 37
y = x + 5
print(y)
print("\n")

comments begin with #, go to end of line

variables need not
be declared

line break separates
expressions
(can also use �;�
to be safe)

no special main()
function or
method

9CMSC 330 - Fall 2018

Run Ruby, Run
There are two basic ways to run a Ruby program

• ruby -w filename – execute script in filename
Ø tip: the -w will cause Ruby to print a bit more if something

bad happens
Ø Ruby filenames should end with �.rb� extension

• irb – launch interactive Ruby shell
Ø Can type in Ruby programs one line at a time, and watch as

each line is executed
irb(main):001:0> 3+4
Þ7

Ø Can load Ruby programs via load command
• Form: load string
• String must be name of file containing Ruby program
• E.g.: load �foo.rb�

Ruby is installed on Grace cluster
10CMSC 330 - Fall 2018

Some Ruby Language Features

Implicit declarations
• Java, C have explicit declarations

Dynamic typing
• Java, C have (mostly) static typing

Everything is an object
• No distinction between objects and primitive data

• Even “null” is an object (called nil in Ruby), as are classes

No outside access to private object state
• Must use getters, setters

No method overloading

Class-based and Mixin inheritance

15CMSC 330 - Fall 2018

Implicit vs. Explicit Declarations

In Ruby, variables are implicitly declared
• First use of a variable declares it and determines type

x = 37; // no declaration needed – created when assigned to
y = x + 5

• x, y now exist, are integers

Java and C/C++ use explicit variable declarations
• Variables are named and typed before they are used

int x, y; // declaration
x = 37; // use
y = x + 5; // use

16CMSC 330 - Fall 2018

Tradeoffs?

Explicit Declarations Implicit Declarations

More text to type Less text to type

Helps prevent typos Easy to mistype variable
name

19

var = 37
If (rare-condition)

y = vsr + 5

Typo!
Only caught when this line is actually run.
Bug could be latent for quite a while

CMSC 330 - Fall 2018

20

Static Type Checking (Static Typing)

Before program is run
• Types of all expressions are determined

• Disallowed operations cause compile-time error
Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#

• But may also be inferred – compiler determines type
based on usage
Ø OCaml, C# and Go (limited)

CMSC 330 - Fall 2018

21

Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp

CMSC 330 - Fall 2018

Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed

Notes
• Can always run the Ruby program; may fail when run
• C variables declared, with types

Ø Ruby variables declared implicitly
Ø Implicit declarations most natural with dynamic typing

Ruby
x = 3
x = "foo" # gives x a

new type
x.foo # NoMethodError

at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */

22CMSC 330 - Fall 2018

23

Tradeoffs?
Static type checking
• More work for programmer (at first)

Ø Catches more (and subtle) errors at compile time

• Precludes some correct programs
Ø May require a contorted rewrite

• More efficient code (fewer run-time checks)
Dynamic type checking
• Less work for programmer (at first)

Ø Delays some errors to run time

• Allows more programs
Ø Including ones that will fail

• Less efficient code (more run-time checks)
CMSC 330 - Fall 2018

Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();

x.println(�hello�); // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();

String s = (String) o; // No compiler warning, fails at run time

// (Some Java compilers may be smart enough to warn about
above cast)

24CMSC 330 - Fall 2018

Quiz 1: Get out your clickers!

True or false: This program has a type error

25

Ruby
x = 3
y = “foo”
x = y

A. True
B. False

CMSC 330 - Fall 2018

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

26

Ruby
x = 3
y = “foo”
x = y

A. True

B.False

/* C */
void foo() {

int x = 3;
char *y = “foo”;
x = y;

}

A. True
B. False

CMSC 330 - Fall 2018

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

27

Ruby
x = 3
y = “foo”
x = y

A. True
B. False

/* C */
void foo() {

int x = 3;
char *y = “foo”;
x = y;

}

A.True
B. False

CMSC 330 - Fall 2018

Control Statements in Ruby

A control statement is one that affects which
instruction is executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

elsif grade >= 70 then
puts "You got a C"

else
puts "You�re not doing so well"

end

28

i = 0
while i < n

i = i + 1
end

CMSC 330 - Fall 2018

Conditionals and Loops Must End!

All Ruby conditional and looping statements
must be terminated with the end keyword.
Examples
• if grade >= 90 then

puts "You got an A"
end

• if grade >= 90 then
puts "You got an A"

else
puts �No A, sorry"

end

29

• i = 0
while i < n

i = i + 1
end

CMSC 330 - Fall 2018

What is True?

The guard of a conditional is the expression that
determines which branch is taken

The true branch is taken if the guard evaluates
to anything except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard

30CMSC 330 - Fall 2018

Yet More Control Statements in Ruby

unless cond then stmt-f else stmt-t end
• Same as �if not cond then stmt-t else stmt-f end�

until cond body end
• Same as �while not cond body end�

until i >= n
puts message
i = i + 1

end

unless grade < 90 then
puts "You got an A"

else unless grade < 80 then
puts "You got a B”

end

31CMSC 330 - Fall 2018

Using If and Unless as Modifiers

Can write if and unless after an expression

• puts "You got an A" if grade >= 90

• puts "You got an A" unless grade < 90

Why so many control statements?

• Is this a good idea? Why or why not?

Ø Good: can make program more readable, expressing

programs more directly. In natural language, many ways to

say the same thing, which supports brevity and adds style.

Ø Bad: many ways to do the same thing may lead to confusion

and hurt maintainability (if future programmers don’t

understand all styles)

32CMSC 330 - Fall 2018

Quiz 2: What is the output?

33

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A.“true”
B.“== 0”
C.“false”
�� ����	
���
��������
������

CMSC 330 - Fall 2018

Quiz 2: What is the output?

34

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A.“true”
B.“== 0”
C.“false”
�� ��
��	��
�
�������������

CMSC 330 - Fall 2018

x �������
�� false �� nil ��
�
��������	�����������������

Methods in Ruby

def sayN(message, n)
i = 0
while i < n

puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

List parameters
at definition

Invoke method

May omit parens
on call

Methods are declared with def...end

Methods should begin with lowercase letter and be defined before they are called
Variable names that begin with uppercase letter are constants (only assigned once)

36

Like print, but
Adds newline

CMSC 330 - Fall 2018

Terminology

Formal parameters
• Variable parameters used in the method
• def sayN(message, n) in our example

Actual arguments
• Values passed in to the method at a call
• x = sayN("hello", 3) in our example

Top-level methods are “global”
• Not part of a class. sayN is a top-level method.

37CMSC 330 - Fall 2018

Method Return Values

Value of the return is the value of the last
executed statement in the method
• These are the same:

Methods can return multiple results (as an
Array)

38

def dup(x)
return x,x

end

def add_three(x)
return x+3

end

def add_three(x)
x+3

end

CMSC 330 - Fall 2018

Everything is an Object

All values are (references to) objects
• Java/C/C++ distinguish primitives from objects

Objects communicate via method calls
Each object has its own (private) state
Every object is an instance of a class
• An object’s class determines its behavior:
• The class contains method and field definitions

Ø Both instance fields and per-class (“static”) fields

39CMSC 330 - Fall 2018

Everything is an Object

Examples
• (-4).abs

Ø integers are instances of class Fixnum

• 3 + 4
Ø infix notation for �invoke the + method of 3 on argument 4�

• "programming".length
Ø strings are instances of String

• String.new
Ø classes are objects with a new method

• 4.13.class
Ø use the class method to get the class for an object
Ø floating point numbers are instances of Float

40

No-argument instance method of Fixnum

CMSC 330 - Fall 2018

Classes

Class names begin with an uppercase letter
The new method creates an object
• s = String.new creates a new String and makes s

refer to it
Every class inherits from Object

41CMSC 330 - Fall 2018

Objects and Classes
Objects are data
Classes are types (the kind of data which things are)
Classes are also objects

Integer, Float, and String are objects of type Class
• So is Class itself!

Object Class (aka type)
10 Integer
-3.30 Float
"CMSC 330" String
String.new String
[‘a’, ‘b’, ‘c’] Array
Integer Class

42CMSC 330 - Fall 2018

The nil Object

Ruby uses a special object nil

• All uninitialized fields set to nil (@ prefix used for fields)

irb(main):004:0> @x

=> nil

• Like NULL or 0 in C/C++ and null in Java

nil is an object of class NilClass

• It�s a singleton object – there is only one instance of it

Ø NilClass does not have a new method

• nil has methods like to_s, but not other methods

irb(main):006:0> nil + 2

NoMethodError: undefined method `+' for nil:NilClass

44CMSC 330 - Fall 2018

Quiz 3

What is the type of variable x at the end of the
following program?

45

p = nil
x = 3
if p then
x = nil

else
x = “hello”

end

A. String
B. Integer
C. NilClass
D. Nothing – there’s a type error

CMSC 330 - Fall 2018

Quiz 3

What is the type of variable x at the end of the

following program?

46

p = nil
x = 3
if p then
x = nil

else
x = “hello”

end

A. String
B. Integer

C. NilClass

D. Nothing – there’s a type error

CMSC 330 - Fall 2018

Creating Strings in Ruby

Substitution in double-quoted strings with #{ }
• course = "330"; msg = "Welcome to #{course}"
• "It is now #{Time.new}"
• The contents of #{ } may be an arbitrary expression
• Can also use single-quote as delimiter

Ø No expression substitution, fewer escaping characters

Here-documents
s = <<END
This is a text message on multiple lines
and typing \\n is annoying

END
47CMSC 330 - Fall 2018

Creating Strings in Ruby (cont.)

Ruby has printf and sprintf
• printf("Hello, %s\n", name);
• sprintf("%d: %s", count, Time.now)

Ø Returns a String

to_s returns a String representation of an object
• Can be invoked implicitly – write puts(p) instead of

puts(p.to_s)
Ø Like Java’s toString()

inspect converts any object to a string
irb(main):033:0> p.inspect
=> "#<Point:0x54574 @y=4, @x=7>"

48CMSC 330 - Fall 2018

Standard Library: String

The String class has many useful methods
• s.length # length of string
• s1 == s2 # structural equality (string contents)
• s = "A line\n"; s.chomp # returns "A line"

Ø Return new string with s's contents except newline at end of
line removed

• s = "A line\n"; s.chomp!
Ø Destructively removes newline from s
Ø Convention: methods ending in ! modify the object
Ø Another convention: methods ending in ? observe the object

49CMSC 330 - Fall 2018

Defining Your Own Classes
class Point

def initialize(x, y)
@x = x
@y = y

end

def add_x(x)
@x += x

end

def to_s
return "(" + @x.to_s + "," + @y.to_s + ")"

end
end

p = Point.new(3, 4)
p.add_x(4)
puts(p.to_s)

constructor definition

class name is uppercase

instance variables prefixed with �@�

method with no arguments

instantiation

invoking no-arg method
52CMSC 330 - Fall 2018

No Outside Access To Internal State

Instance variables (with @) can be directly

accessed only by instance methods

Outside class, they require accessors:

Very common, so Ruby provides a shortcut

53

def x
@x

end

def x= (value)
@x = value

end

A typical getter A typical setter

class ClassWithXandY
attr_accessor :x, :y

end

Says to generate the
x= and x and
y= and y methods

CMSC 330 - Fall 2018

No Method Overloading in Ruby

Thus there can only be one initialize method
• A typical Java class might have two or more

constructors
No overloading of methods in general
• You can code up your own overloading by using a

variable number of arguments, and checking at run-
time the number/types of arguments

Ruby does issue an exception or warning if a
class defines more than one initialize method
• But last initialize method defined is the valid one

54CMSC 330 - Fall 2018

A. I smelled Alice for nil seconds
B. Error
C. I smelled #{thing}
D. I smelled Alice

55

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�)

Quiz 4: What is the output?

CMSC 330 - Fall 2018

A. I smelled Alice for nil seconds
B. Error
C. I smelled #{thing}
D. I smelled Alice

56

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�)

Quiz 4: What is the output?

CMSC 330 - Fall 2018

A. I smelled Alice for seconds
B. Error
C. I smelled #{thing} for #{dur} seconds
D. I smelled Alice for 3 seconds

57

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�,3)

Quiz 5: What is the output?

CMSC 330 - Fall 2018

A. I smelled Alice for seconds
B. Error
C. I smelled #{thing} for #{dur} seconds
D. I smelled Alice for 3 seconds

58

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�,3)

Quiz 5: What is the output?

CMSC 330 - Fall 2018

Inheritance

Recall that every class inherits from Object
class A ## < Object

def add(x)
return x + 1

end
end

class B < A
def add(y)

return (super(y) + 1)
end

end

b = B.new
puts(b.add(3))

extend superclass

invoke add method
of parent

59

b.is_a? A
true
b.instance_of? A
false

CMSC 330 - Fall 2018

Quiz 6: What is the output?
class Gunslinger

def initialize(name)
@name = name

end
def full_name

"#{@name}"
end

end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

61CMSC 330 - Fall 2018

A. Dirty, no good
B. Dirty, no good Billy the kid
C. Billy the Kid
D. Error

Quiz 6: What is the output?
class Gunslinger

def initialize(name)
@name = name

end
def full_name

"#{@name}"
end

end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

62CMSC 330 - Fall 2018

A. Dirty, no good
B. Dirty, no good Billy the kid
C. Billy the Kid
D. Error

Global Variables in Ruby

Ruby has two kinds of global variables
• Class variables beginning with @@ (static in Java)
• Global variables across classes beginning with $

class Global
@@x = 0

def Global.inc
@@x = @@x + 1; $x = $x + 1

end

def Global.get
return @@x

end
end

$x = 0
Global.inc
$x = $x + 1
Global.inc
puts(Global.get)
puts($x)

define a class
(�singleton�) method

63CMSC 330 - Fall 2018

A. 0
B. 3
C. 5
D. 7

class Animal
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
giraffe = Animal.new(1,2)
elephant = Animal.new(3,4)
puts giraffe.measure()

64

Quiz 7: What is the output?

CMSC 330 - Fall 2018

A. 0
B. 3
C. 5
D. 7

class Animal
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
giraffe = Animal.new(1,2)
elephant = Animal.new(3,4)
puts giraffe.measure()

65

Quiz 7: What is the output?

CMSC 330 - Fall 2018

What is a Program?
In C/C++, a program is...
• A collection of declarations and definitions
• With a distinguished function definition

Ø int main(int argc, char *argv[]) { ... }
• When you run a C/C++ program, it�s like the OS

calls main(...)
In Java, a program is...
• A collection of class definitions
• With some class (say, MyClass) containing a method

Ø public static void main(String[] args)
• When you run java MyClass, the main method of

class MyClass is invoked

67CMSC 330 - Fall 2018

A Ruby Program is...

The class Object
• When the class is loaded, any expressions not in

method bodies are executed
def sayN(message, n)

i = 0
while i < n

puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

defines a method of Object
(i.e., top-level methods belong to Object)

invokes self.sayN

invokes self.puts
(part of Object)

68CMSC 330 - Fall 2018

