
CMSC 330: Organization of
Programming Languages

Inheritance, Mixins, Code Blocks,
Equality

1CMSC 330 - Summer 2018

Defining Your Own Classes
class Point

def initialize(x, y)
@x = x
@y = y

end

def add_x(x)
@x += x

end

def to_s
return "(" + @x.to_s + "," + @y.to_s + ")"

end
end

p = Point.new(3, 4)
p.add_x(4)
puts(p.to_s)

constructor definition

class name is uppercase

instance variables prefixed with �@�

method with no arguments

instantiation

invoking no-arg method
2CMSC 330 - Summer 2018

No Outside Access To Internal State

Instance variables (with @) can be directly
accessed only by instance methods
Outside class, they require accessors:

Very common, so Ruby provides a shortcut

3

def x
@x

end

def x= (value)
@x = value

end

A typical getter A typical setter

class ClassWithXandY
attr_accessor :x, :y

end

Says to generate the
x= and x and
y= and y methods

CMSC 330 - Summer 2018

No Method Overloading in Ruby

Thus there can only be one initialize method
• A typical Java class might have two or more

constructors
No overloading of methods in general
• You can code up your own overloading by using a

variable number of arguments, and checking at run-
time the number/types of arguments

Ruby does issue an exception or warning if a
class defines more than one initialize method
• But last initialize method defined is the valid one

4CMSC 330 - Summer 2018

A. I smelled Alice for nil seconds
B. Error
C. I smelled #{thing}
D. I smelled Alice

5

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�)

Quiz 1: What is the output?

CMSC 330 - Summer 2018

A. I smelled Alice for nil seconds
B. Error
C. I smelled #{thing}
D. I smelled Alice

6

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�)

Quiz 1: What is the output?

CMSC 330 - Summer 2018

A. I smelled Alice for seconds
B. Error
C. I smelled #{thing} for #{dur} seconds
D. I smelled Alice for 3 seconds

7

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�,3)

Quiz 2: What is the output?

CMSC 330 - Summer 2018

A. I smelled Alice for seconds
B. Error
C. I smelled #{thing} for #{dur} seconds
D. I smelled Alice for 3 seconds

8

class Dog
def smell(thing)

"I smelled #{thing}�
end
def smell(thing,dur)

"I smelled #{thing} for #{dur} seconds�
end

end
fido = Dog.new
puts fido.smell(”Alice�,3)

Quiz 2: What is the output?

CMSC 330 - Summer 2018

Inheritance

Recall that every class inherits from Object
class A ## < Object

def add(x)
return x + 1

end
end

class B < A
def add(y)

return (super(y) + 1)
end

end

b = B.new
puts(b.add(3))

extend superclass

invoke add method
of parent

9

b.is_a? A
true
b.instance_of? A
false

CMSC 330 - Summer 2018

Quiz 6: What is the output?
class Gunslinger

def initialize(name)
@name = name

end
def full_name

"#{@name}"
end

end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

11CMSC 330 - Summer 2018

A. Dirty, no good
B. Dirty, no good Billy the kid
C. Billy the Kid
D. Error

Quiz 6: What is the output?
class Gunslinger

def initialize(name)
@name = name

end
def full_name

"#{@name}"
end

end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

12CMSC 330 - Summer 2018

A. Dirty, no good
B. Dirty, no good Billy the kid
C. Billy the Kid
D. Error

Global Variables in Ruby

Ruby has two kinds of global variables
• Class variables beginning with @@ (static in Java)
• Global variables across classes beginning with $

class Global
@@x = 0

def Global.inc
@@x = @@x + 1; $x = $x + 1

end

def Global.get
return @@x

end
end

$x = 0
Global.inc
$x = $x + 1
Global.inc
puts(Global.get)
puts($x)

define a class
(�singleton�) method

13CMSC 330 - Summer 2018

A. 0
B. 3
C. 5
D. 7

class Animal
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
giraffe = Animal.new(1,2)
elephant = Animal.new(3,4)
puts giraffe.measure()

14

Quiz 7: What is the output?

CMSC 330 - Summer 2018

A. 0
B. 3
C. 5
D. 7

class Animal
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
giraffe = Animal.new(1,2)
elephant = Animal.new(3,4)
puts giraffe.measure()

15

Quiz 7: What is the output?

CMSC 330 - Summer 2018

Mixins

Another form of code reuse is “mix-in” inclusion
• include A “inlines” A’s methods at that point

Ø Referred-to variables/methods captured from context
Ø In effect: it adds those methods to the current class

To define a mixin, use module, not class

16CMSC 330 - Summer 2018

module Doubler
def double

self +self
end

end

#include the mixin in a class
class Integer

include Doubler
end

10.double => 20

Mixins

17CMSC 330 - Summer 2018

module Doubler
def double

self +self
end

end

class Integer
include Doubler

end

10.double => 20

class String
include Doubler

end

"hello".double => "hellohello"

Mixin method lookup rules:

When you call method m of class C
1. look if class C has method m
2. mixin in class C
3. if multiple mixins included, later mixin shadows early

mixin
4. C's superclass
5. C's superclass mixin
6. C's superclass's superclass
7. …

CMSC 330 - Summer 2018 18

Mixin example 1

CMSC 330 - Summer 2018 19

module M1
def hello

"M1 hello"
end

end

module M2
def hello

"M2 hello"
end

end

class A
include M1
include M2
def hello

"A hello"
end

end

a = A.new
a.hello #class A has a method hello and it is called for
a.hello # returns A hello
a.class.ancestors

=> [A, M2, M1, Object, Kernel, BasicObject]

Mixin example 2

CMSC 330 - Summer 2018 20

module M1
def hello

"M1 hello"
end

end

module M2
def hello

"M2 hello"
end

end

class A
include M1
include M2

end

a = A.new
a.hello => returns M2 hello
a.class.ancestors
=> [A, M2, M1, Object, Kernel, BasicObject]

• class A does not have a method
hello. look for the method hello from
mixin.

• Both M1 and M2 have a method
hello. M2's hello shadows M1's
hello method.

Mixin example 3

CMSC 330 - Summer 2018 21

module M1
def hello

"m1 says hello, " + super
end
def what

"Mary"
end

end
class A

def hello
"A says hello, " + what

end
def what

"Alice"
end

end
class B < A

include M1
def hello

"B says hello, " + super
end
def what

"Bob"
end

end

b = B.new
B.ancestors=>
[B, M1, A, Object, Kernel,
BasicObject]

b.hello=>
B says hello, m1 says hello, A says
hello, Bob

B's hello is called. super called B's
superclass M1's hello. super in M1's
hello called hello in superclass A. At
the end, the "what" method of the
current object "b" is called.

Mixins: Comparable

22

class OneDPoint
attr_accessor :x
include Comparable
def <=>(other)# used by Comparable

if @x < other.x then return -1
elsif @x > other.x then return 1
else return 0
end

end
end

p = OneDPoint.new
p.x = 1
q = OneDPoint.new
q.x = 2
x < y # true
puts [y,x].sort
prints x, then y

CMSC 330 - Summer 2018

Code Blocks

A code block is a piece of code that is invoked
by another piece of code

Code blocks are useful for encapsulating
repetitive computations

24CMSC 330 - Summer 2018

Array Iteration with Code Blocks

The Array class has an each method
• Takes a code block as an argument

a = [1,2,3,4,5]
a.each { |x| puts x }

code block delimited by
{ }�s or do...end parameter name

(optional)

body

25CMSC 330 - Summer 2018

More Examples of Code Block Usage
Sum up the elements of an array

Print out each segment of the string as divided
up by commas (commas are printed trailing
each segment)
• Can use any delimiter

a = [1,2,3,4,5]
sum = 0
a.each { |x| sum = sum + x }
printf("sum is %d\n", sum)

s = "Student,Sally,099112233,A"
s.split(',').each { |x| puts x }

(�delimiter� = symbol used to denote boundaries)
26CMSC 330 - Summer 2018

Yet More Examples of Code Blocks

• n.times runs code block n times
• n.upto(m) runs code block for integers n..m
• a.find returns first element x of array such that the

block returns true for x
• a.collect applies block to each element of array and

returns new array (a.collect! modifies the original)

3.times { puts "hello"; puts "goodbye" }
5.upto(10) { |x| puts(x + 1) }
[1,2,3,4,5].find { |y| y % 2 == 0 }
[5,4,3].collect { |x| -x }

27CMSC 330 - Summer 2018

Still Another Example of Code Blocks

• open method takes code block with file argument
Ø File automatically closed after block executed

• readlines reads all lines from a file and returns an
array of the lines read
Ø Use each to iterate

• Can do something similar on strings directly:
• "r1\nr2\n\nr4".each_line { |rec| puts rec }

Ø Apply code block to each newline-separated substring

File.open("test.txt", "r") do |f|
f.readlines.each { |line| puts line }

end

28

alternative syntax: do … end instead of { … }

CMSC 330 - Summer 2018

Code Blocks for Hashes

Can iterate over keys and values separately
population.keys.each { |k|

print “key: ”, k, “ value: ”, population[k]
}

popluation.values.each { |v|
print “value: ”, v

}

29

population = {}
population[“USA”] = 319
population[“Italy”] = 60
population.each { |c,p|

puts “population of #{c} is #{p} million”
}

key

value

CMSC 330 - Summer 2018

Using Yield To Call Code Blocks
Any method can be called with a code block
• Inside the method, the block is called with yield

After the code block completes
• Control returns to the caller after the yield instruction
def countx(x)
for i in (1..x)

puts i
yield

end
end

countx(4) { puts "foo" }

1
foo
2
foo
3
foo
4
foo

30CMSC 330 - Summer 2018

Using Yield to Call Code Blocks

CMSC 330 - Summer 2018 31

def do_it_twice
return "No block" unless block_given?
yield
yield

end

do_it_twice {puts "hello"}
=>
hello
hello

Ruby methods receive an implicit code block

Code Block is not an Object

Proc makes an object out of code blocks
• t = Proc.new{|x| x+2}

a method that receives a proc object

CMSC 330 - Summer 2018 32

def say(p)
p.call 10

end

say(t) => return 12

So What Are Code Blocks?

A code block is just a special kind of method
• { |y| x = y + 1; puts x } is almost the same as
• def m(y) x = y + 1; puts x end

The each method takes a code block as a
parameter
• This is called higher-order programming

Ø In other words, methods take other methods as arguments
Ø We�ll see a lot more of this in OCaml

We’ll see other library classes with each methods
• And other methods that take code blocks as arguments
• As we saw, your methods can use code blocks too!

33CMSC 330 - Summer 2018

Mixins: Enumerable

CMSC 330 - Summer 2018 34

class MyRange
include Enumerable #map,select,

inject, collect, find
def initialize(low,high)

@low = low #(2,8)
@high = high

end
def each

i=@low
while i <= @high

yield i
i=i+1

end
end

end

Quiz 4: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

35CMSC 330 - Summer 2018

Quiz 4: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

36CMSC 330 - Summer 2018

Quiz 5: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x
end
myFun(3) { |v| puts "#{v} #{v*v}” }

37CMSC 330 - Summer 2018

Quiz 5: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x
end
myFun(3) { |v| puts "#{v} #{v*v}” }

38CMSC 330 - Summer 2018

Ranges

1..3 is an object of class Range
• Integers between 1 and 3 inclusively

1…3 also has class Range
• Integers between 1 and 3 but not including 3 itself.

Not just for integers
• ‘a’..’z’ represents the range of letters ‘a’ to ‘z’
• 1.3…2.7 is the continuous range [1.3,2.7)

Ø (1.3…2.7).include? 2.0 # => true

Discrete ranges offer the each method to iterate
• And can convert to an array via to_a; e.g., (1..2).to_a

39CMSC 330 - Summer 2018

Object Copy vs. Reference Copy

Consider the following code

• Assume an object/reference model like Java or Ruby

Ø Or even two pointers pointing to the same structure

Which of these occur?

Object copy Reference copy

x = "groundhog" ; y = x

x "groundhog"
(reference) (object)

y "groundhog"

x
(reference) "groundhog"

(object)
y

40CMSC 330 - Summer 2018

Object Copy vs. Reference Copy (cont.)

For
• Ruby and Java would both do a reference copy

But for

• Ruby would cause an object copy
• Unnecessary in Java since Strings are immutable

x = "groundhog"
y = String.new(x)

x = "groundhog" ; y = x

41CMSC 330 - Summer 2018

Physical vs. Structural Equality

Consider these cases again:

If we compare x and y, what is compared?
• The references, or the contents of the objects they

point to?
If references are compared (physical equality)
the first would return false but the second true
If objects are compared both would return true

x "groundhog"
(reference) (object)

y "groundhog"

x
(reference) "groundhog"

(object)
y

42CMSC 330 - Summer 2018

String Equality

In Java, x == y is physical equality, always
• Compares references, not string contents

In Ruby, x == y for strings uses structural equality
• Compares contents, not references
• == is a method that can be overridden in Ruby!
• To check physical equality, use the equal? method

Ø Inherited from the Object class

It’s always important to know whether you’re
doing a reference or object copy
• And physical or structural comparison

43CMSC 330 - Summer 2018

Comparing Equality

Language Physical equality Structural equality
Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

Ocaml a == b a = b

Python a is b a == b

Scheme (eq? a b) (equal? a b)

Visual Basic .NET a Is b a = b

44CMSC 330 - Summer 2018

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Ocaml
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic_.NET

Quiz 6: Which is true?

a) Structural equality implies physical equality
b) Physical equality implies structural equality
c) Physical equality does not work for cyclic data

structures
d) == always means physical equality

CMSC 330 - Summer 2018 45

Quiz 6: Which is true?

a) Structural equality implies physical equality
b) Physical equality implies structural equality
c) Physical equality does not work for cyclic data

structures
d) == always means physical equality

CMSC 330 - Summer 2018 46

