
CMSC 330: Organization of
Programming Languages

Working with OCaml

1CMSC330 Fall 2018

2

OCaml Compiler

• OCaml programs can be compiled using ocamlc
– Produces .cmo (�compiled object�) and .cmi

(�compiled interface�) files
• We’ll talk about interface files later

– By default, also links to produce executable a.out
• Use -o to set output file name
• Use -c to compile only to .cmo/.cmi and not to link

• Can also compile with ocamlopt
– Produces .cmx files, which contain native code
– Faster, but not platform-independent (or as easily

debugged)

3

OCaml Compiler

• Compiling and running the following small program:

% ocamlc hello.ml
% ./a.out
Hello world!
%

(* A small OCaml program *)
print_string "Hello world!\n";;

hello.ml:

4

OCaml Compiler: Multiple Files

let main () =
print_int (Util.add 10 20);
print_string "\n"

let () = main ()

main.ml:
let add x y = x+y
util.ml:

• Compile both together (produces a.out)
ocamlc util.ml main.ml

• Or compile separately
ocamlc –c util.ml
ocamlc util.cmo main.ml

• To execute
./a.out

OCamlbuild
• Use ocamlbuild to compile larger projects

and automatically find dependencies
• Build a bytecode executable out of main.ml

and its local dependencies
ocamlbuild main.byte

• The executable main.byte is in _build
folder. To execute:

./main.byte

5

OCaml Top-level

• The top-level is a read-eval-print loop (REPL) for OCaml
– Like Ruby’s irb

• Start the top-level with the ocaml command:
ocaml

OCaml version 4.04.0
print_string ”Hello world!\n";;
Hello world!
- : unit = ()
#

• To exit the top-level, type ^D (Control D) or call the exit 0
exit 0;;

6

7

OCaml Top-level (cont’d)
Expressions can also be typed and evaluated at the top-level:
3 + 4;;
- : int = 7

let x = 37;;
val x : int = 37

x;;
- : int = 37

let y = 5;;
val y : int = 5

let z = 5 + x;;
val z : int = 42

print_int z;;
42- : unit = ()

print_string "Colorless green ideas sleep furiously";;
Colorless green ideas sleep furiously- : unit = ()

print_int "Colorless green ideas sleep furiously";;
This expression has type string but is here used with type int

gives type and value of each expr

unit = �no interesting value� (like void)

�-� = �the expression you just typed�

Loading files

• Load a file into top-level
#use “filename.ml”

• Example:
#use "hello.ml";;
Hello world!
- : unit = ()
#

File hello.ml :
print_string "Hello world!\n";;

#use loads in a file one line at a time

8

9

A Note on ;;

• ;; ends an expression in the top-level of OCaml

– Use it to say: �Give me the value of this expression�

– Not used in the body of a function

– Not needed after each function definition

• Though for now it won’t hurt if used there

• There is also a single semi-colon ; in OCaml

– But we won’t need it for now

– It’s only useful when programming imperatively, i.e.,

with side effects

• Which we won’t do for a while

