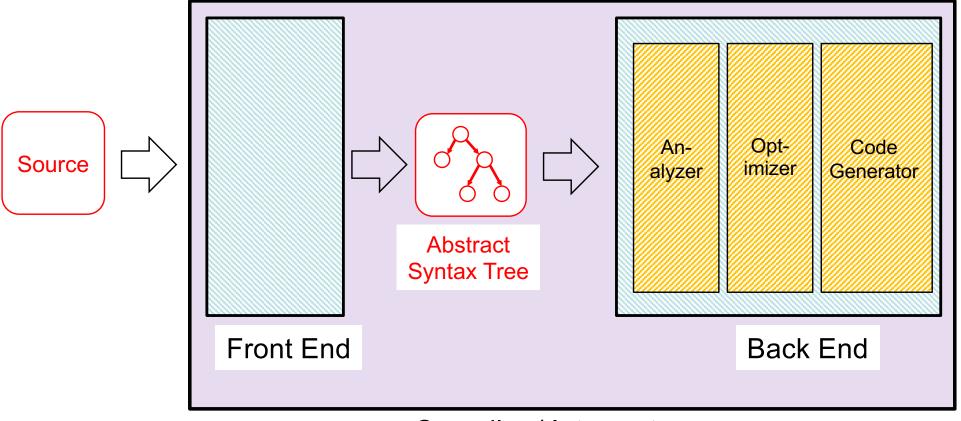
CMSC 330: Organization of Programming Languages

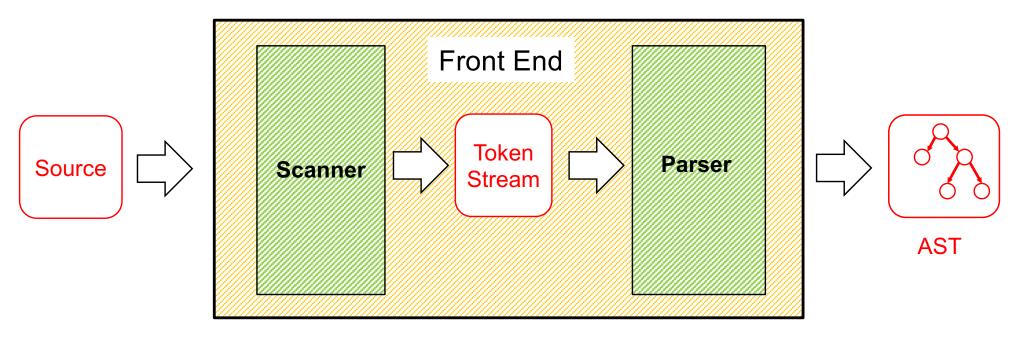
Context Free Grammars

Architecture of Compilers, Interpreters



Compiler / Interpreter

Front End – Scanner and Parser



- Scanner / lexer converts program source into tokens (keywords, variable names, operators, numbers, etc.) using regular expressions
- Parser converts tokens into an AST (abstract syntax tree) using context free grammars

Context-Free Grammar (CFG)

- A way of describing sets of strings (= languages)
 - The notation L(G) denotes the language of strings defined by grammar G
- Example grammar G is S → 0S | 1S | ε which says that string s' ∈ L(G) iff
 - $s' = \varepsilon$, or $\exists s \in L(G)$ such that s' = 0s, or s' = 1s
- Grammar is same as regular expression (0|1)*
 - Generates / accepts the same set of strings

CFGs Are Expressive

- CFGs subsume REs, DFAs, NFAs
 - There is a CFG that generates any regular language
 - But: REs are often better notation for those languages
- And CFGs can define languages regexps cannot
 - $S \rightarrow (S) | \varepsilon | // represents balanced pairs of ()'s$

 As a result, CFGs often used as the basis of parsers for programming languages

Parsing with CFGs

- CFGs formally define languages, but they do not define an algorithm for accepting strings
- Several styles of algorithm; each works only for less expressive forms of CFG
 - LL(k) parsing ← We will discuss this next lecture
 - LR(k) parsing
 - LALR(k) parsing
 - SLR(k) parsing
- Tools exist for building parsers from grammars
 - JavaCC, Yacc, etc.

Formal Definition: Context-Free Grammar

- A CFG G is a 4-tuple (Σ, N, P, S)
 - Σ alphabet (finite set of symbols, or terminals)
 - Often written in lowercase
 - N a finite, nonempty set of nonterminal symbols
 - > Often written in UPPERCASE
 - > It must be that $N \cap \Sigma = \emptyset$
 - P a set of productions of the form $N \to (\Sigma | N)^*$
 - ▶ Informally: the nonterminal can be replaced by the string of zero or more terminals / nonterminals to the right of the →
 - Can think of productions as rewriting rules (more later)
 - S ∈ N the start symbol

Notational Shortcuts

```
S \rightarrow aBc \text{ // } S \text{ is start symbol}
A \rightarrow aA
| b \text{ // } A \rightarrow b
| \text{ // } A \rightarrow \epsilon
```

- A production is of the form
 - left-hand side (LHS) → right hand side (RHS)
- If not specified
 - Assume LHS of first production is the start symbol
- Productions with the same LHS
 - Are usually combined with
- If a production has an empty RHS
 - It means the RHS is ε

Backus-Naur Form

- Context-free grammar production rules are also called Backus-Naur Form or BNF
 - Designed by John Backus and Peter Naur
 - Chair and Secretary of the Algol committee in the early 1960s. Used this notation to describe Algol in 1962
- A production A → B c D is written in BNF as <A> ::= c <D>
 - Non-terminals written with angle brackets and uses
 ::= instead of →
 - Often see hybrids that use ::= instead of → but drop the angle brackets on non-terminals

Generating Strings

- We can think of a grammar as generating strings by rewriting
- Example grammar G

```
S \rightarrow 0S \mid 1S \mid \epsilon
```

Generate string 011 from G as follows:

```
S \Rightarrow 0S // using S \rightarrow 0S

⇒ 01S // using S \rightarrow 1S

⇒ 011S // using S \rightarrow 1S

⇒ 011 // using S \rightarrow ε
```

Accepting Strings (Informally)

- Checking if s ∈ L(G) is called acceptance
 - Algorithm: Find a rewriting starting from G's start symbol that yields s
 - A rewriting is some sequence of productions (rewrites) applied starting at the start symbol
 - > 011 ∈ L(G) according to the previous rewriting
- Terminology
 - Such a sequence of rewrites is a derivation or parse
 - Discovering the derivation is called parsing

Derivations

Notation

- ⇒ indicates a derivation of one step
- ⇒⁺ indicates a derivation of one or more steps
- ⇒* indicates a derivation of zero or more steps

Example

- $S \rightarrow 0S \mid 1S \mid \epsilon$
- For the string 010
 - $S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 010$
 - S ⇒ + 010
 - 010 ⇒* 010

Language Generated by Grammar

L(G) the language defined by G is

$$L(G) = \{ s \in \Sigma^* \mid S \Rightarrow^+ s \}$$

- S is the start symbol of the grammar
- Σ is the alphabet for that grammar
- In other words
 - All strings over Σ that can be derived from the start symbol via one or more productions

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

- Which of the following strings is generated by this grammar?
 - A. ccc
 - B. aba
 - C. bab
 - D. ca

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following strings is generated by this grammar?

A. ccc

B. aba

C. bab

D. ca

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string bbc?

A. $S \Rightarrow T \Rightarrow U \Rightarrow bU \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $B. S \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $C. S \Rightarrow T \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $D. S \Rightarrow T \Rightarrow bT \Rightarrow bTbT \Rightarrow bbT \Rightarrow bbcU \Rightarrow bbc$

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string bbc?

A. $S \Rightarrow T \Rightarrow U \Rightarrow bU \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

B. $S \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $C. S \Rightarrow T \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $D. S \Rightarrow T \Rightarrow bT \Rightarrow bTbT \Rightarrow bbT \Rightarrow bbcU \Rightarrow bbc$

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

- Which of the following regular expressions accepts the same language as this grammar?
 - A. (a|b|c)*
 - B. abc*
 - C. a*b*c*
 - D. (a|ab|abc)*

Consider the grammar

$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

- Which of the following regular expressions accepts the same language as this grammar?
 - A. (a|b|c)*
 - B. abc*
 - C. a*b*c*
 - D. (a|ab|abc)*

Designing Grammars

Use recursive productions to generate an arbitrary number of symbols

```
A \rightarrow xA \mid \epsilon // Zero or more x's A \rightarrow yA \mid y // One or more y's
```

Use separate non-terminals to generate disjoint parts of a language, and then combine in a production

CMSC 330 Fall 2018

Designing Grammars

To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle

```
\{a^nb^n \mid n \ge 0\} // N a's followed by N b's S \to aSb \mid \epsilon Example derivation: S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb \{a^nb^{2n} \mid n \ge 0\} // N a's followed by 2N b's S \to aSbb \mid \epsilon Example derivation: S \Rightarrow aSbb \Rightarrow aaSbbbb \Rightarrow aabbbb
```

CMSC 330 Fall 2018 24

Designing Grammars

For a language that is the union of other languages, use separate nonterminals for each part of the union and then combine

```
\{a^n(b^m|c^m) \mid m > n \ge 0\}

Can be rewritten as

\{a^nb^m \mid m > n \ge 0\} \cup \{a^nc^m \mid m > n \ge 0\}

S \to T \mid V

T \to aTb \mid U

U \to Ub \mid b

V \to aVc \mid W

W \to Wc \mid c
```

CMSC 330 Fall 2018

Practice

Try to make a grammar which accepts

```
• 0^*|1^* • 0^n1^n where n \ge 0
S \to A \mid B
A \to 0A \mid \epsilon
B \to 1B \mid \epsilon
```

- Give some example strings from this language
 - S → 0 | 1S > 0, 10, 110, 1110, 11110, ...
 - What language is it, as a regexp?

> 1*0

Which of the following grammars describes the same language as $0^{n}1^{m}$ where $m \le n$?

- A. $S \rightarrow 0S1 \mid \epsilon$
- B. $S \rightarrow 0S1 \mid S1 \mid \epsilon$
- C. $S \rightarrow 0S1 \mid 0S \mid \epsilon$
- D. $S \rightarrow SS \mid 0 \mid 1 \mid \epsilon$

Which of the following grammars describes the same language as $0^{n}1^{m}$ where $m \le n$?

```
A. S \rightarrow 0S1 \mid \epsilon
B. S \rightarrow 0S1 \mid S1 \mid \epsilon
C. S \rightarrow 0S1 \mid 0S \mid \epsilon
D. S \rightarrow SS \mid 0 \mid 1 \mid \epsilon
```

CMSC 330 Fall 2018 28

CFGs for Language Syntax

When discussing operational semantics, we used BNF-style grammars to define ASTs

$$e := x \mid n \mid e + e \mid let x = e in e$$

- This grammar defined an AST for expressions synonymous with an OCaml datatype
- We can also use this grammar to define a language parser
 - However, while it is fine for defining ASTs, this grammar, if used directly for parsing, is ambiguous

Arithmetic Expressions

- ► E \rightarrow a | b | c | E+E | E-E | E*E | (E)
 - An expression E is either a letter a, b, or c
 - Or an E followed by + followed by an E
 - etc...
- This describes (or generates) a set of strings
 - {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), ...}
- Example strings not in the language
 - d, c(a), a+, b**c, etc.

Parse Trees

- Parse tree shows how a string is produced by a grammar
 - Root node is the start symbol
 - Every internal node is a nonterminal
 - Children of an internal node
 - > Are symbols on RHS of production applied to nonterminal
 - Every leaf node is a terminal or ε
- Reading the leaves left to right
 - Shows the string corresponding to the tree

CMSC 330 Fall 2018

S

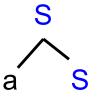
$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$
 $U \rightarrow cU \mid \epsilon$

S

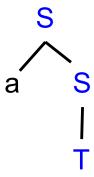
$$S \Rightarrow aS$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



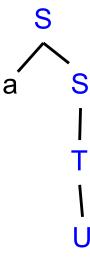
$$S \Rightarrow aS \Rightarrow aT$$

$$\begin{array}{c} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



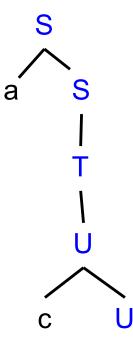
$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



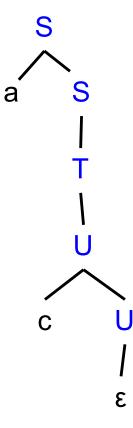
$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac$$

$$\begin{array}{c} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



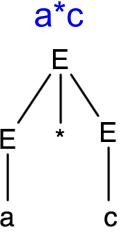
CMSC 330 Fall 2018 38

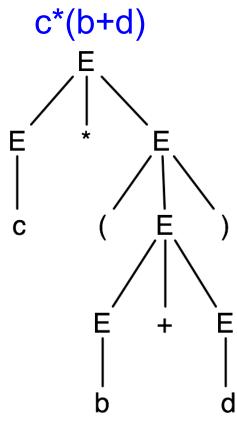
Parse Trees for Expressions

 A parse tree shows the structure of an expression as it corresponds to a grammar

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

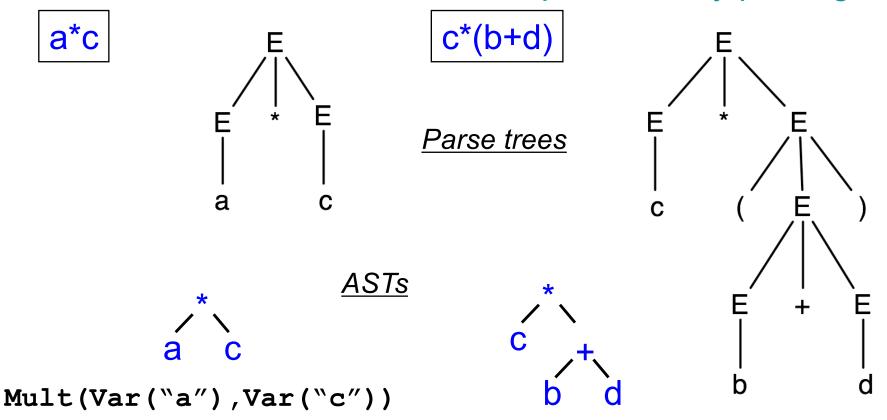
a E a





Abstract Syntax Trees

- A parse tree and an AST are not the same thing
 - The latter is a data structure produced by parsing



Mult(Var("c"), Plus(Var("b"), Var("d")))

CMSC 330 Fall 2018 40

Practice

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

Make a parse tree for...

- a*b
- a+(b-c)
- d*(d+b)-a
- (a+b)*(c-d)
- a+(b-c)*d

Leftmost and Rightmost Derivation

- Leftmost derivation
 - Leftmost nonterminal is replaced in each step
- Rightmost derivation
 - Rightmost nonterminal is replaced in each step
- Example
 - Grammar

$$\gt$$
 S \rightarrow AB, A \rightarrow a, B \rightarrow b

Leftmost derivation for "ab"

$$\gt$$
 S \Rightarrow AB \Rightarrow aB \Rightarrow ab

Rightmost derivation for "ab"

$$\gt$$
 S \Rightarrow AB \Rightarrow Ab \Rightarrow ab

Parse Tree For Derivations

Parse tree may be same for both leftmost & rightmost derivations

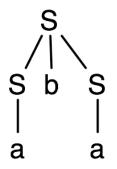
Example Grammar: S → a | SbS String: aba

Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow abS \Rightarrow aba$$

Rightmost Derivation

$$S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba$$



- Parse trees don't show order productions are applied
- Every parse tree has a unique leftmost and a unique rightmost derivation

Parse Tree For Derivations (cont.)

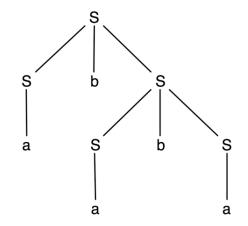
- Not every string has a unique parse tree
 - Example Grammar: S → a | SbS String: ababa

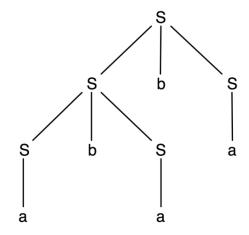
Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow abS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$

Another Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$





Ambiguity

- A grammar is ambiguous if a string may have multiple leftmost derivations
 - Equivalent to multiple parse trees
 - Can be hard to determine

1.
$$S \rightarrow aS \mid T$$

 $T \rightarrow bT \mid U$ No
 $U \rightarrow cU \mid \varepsilon$
2. $S \rightarrow T \mid T$
 $T \rightarrow Tx \mid Tx \mid x \mid x$
3. $S \rightarrow SS \mid () \mid (S)$?

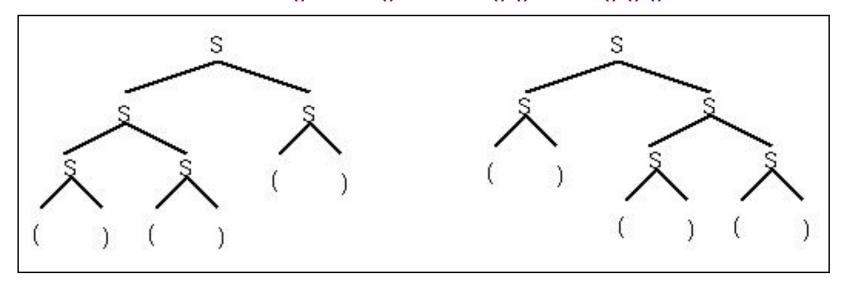
Ambiguity (cont.)

Example

- Grammar: S → SS | () | (S) String: ()()()
- 2 distinct (leftmost) derivations (and parse trees)

$$ightharpoonup S \Rightarrow \underline{S}S \Rightarrow \underline{S}SS \Rightarrow ()\underline{S}S \Rightarrow ()()\underline{S} \Rightarrow ()()()$$

$$> S \Rightarrow \underline{S}S \Rightarrow ()\underline{S} \Rightarrow ()\underline{S}S \Rightarrow ()()\underline{S} \Rightarrow ()()()$$



CFGs for Programming Languages

Recall that our goal is to describe programming languages with CFGs

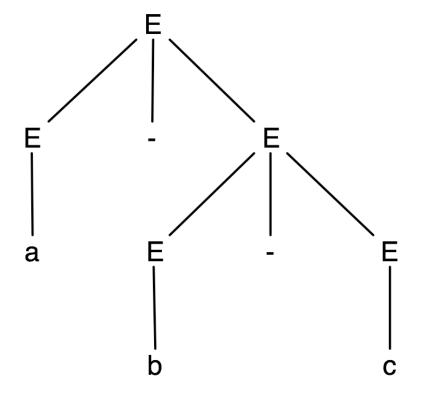
We had the following example which describes limited arithmetic expressions

```
E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)
```

- What's wrong with using this grammar?
 - It's ambiguous!

Example: a-b-c

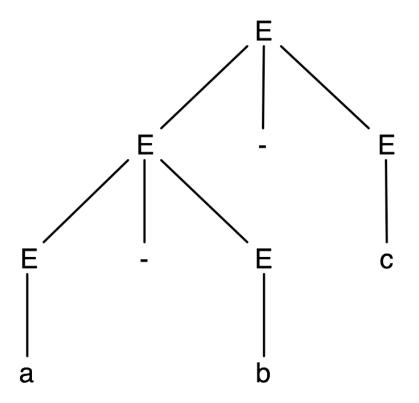
$$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E-E \Rightarrow a-b-E \Rightarrow a-b-c$$



Corresponds to a-(b-c)

$$E \Rightarrow E-E \Rightarrow E-E-E \Rightarrow$$

a-E-E \Rightarrow a-b-c



Corresponds to (a-b)-c

Another Example: If-Then-Else

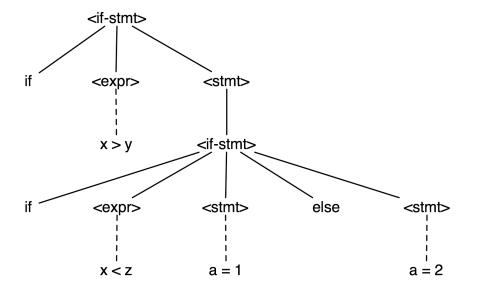
Aka the dangling else problem

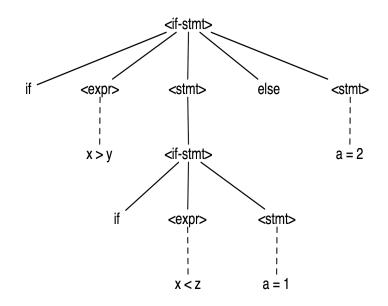
Consider the following program fragment

```
if (x > y)
  if (x < z)
    a = 1;
  else a = 2;
(Note: Ignore newlines)</pre>
```

Two Parse Trees

```
if (x > y)
    if (x < z)
        a = 1;
    else a = 2;</pre>
```





CMSC 330 Fall 2018 51

Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \rightarrow (S, S, S) \mid 1$
- D. None of the above.

Quiz #5

Which of the following grammars is ambiguous?

A.
$$S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$$

- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \rightarrow (S, S, S) \mid 1$
- D. None of the above.

Dealing With Ambiguous Grammars

Ambiguity is bad

- Syntax is correct
- But semantics differ depending on choice

```
Different associativity (a-b)-c vs. a-(b-c)
```

- Different precedence (a-b)*c vs. a-(b*c)
- > Different control flow if (if else) vs. if (if) else

Two approaches

- Rewrite grammar
 - Grammars are not unique can have multiple grammars for the same language. But result in different parses.
- Use special parsing rules
 - > Depending on parsing tool

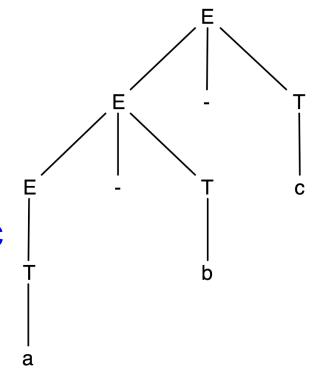
Fixing the Expression Grammar

Require right operand to not be bare expression

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

 $T \rightarrow a \mid b \mid c \mid (E)$

- Corresponds to left associativity
- Now only one parse tree for a-b-c
 - Find derivation



What if we want Right Associativity?

- Left-recursive productions
 - Used for left-associative operators
 - Example

```
E \rightarrow E+T \mid E-T \mid E*T \mid T

T \rightarrow a \mid b \mid c \mid (E)
```

- Right-recursive productions
 - Used for right-associative operators
 - Example

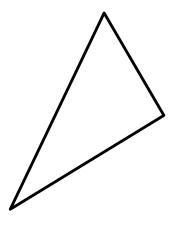
```
E \rightarrow T+E \mid T-E \mid T*E \mid T

T \rightarrow a \mid b \mid c \mid (E)
```

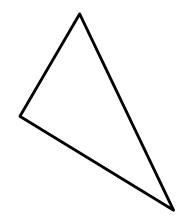
Parse Tree Shape

The kind of recursion determines the shape of the parse tree

left recursion



right recursion



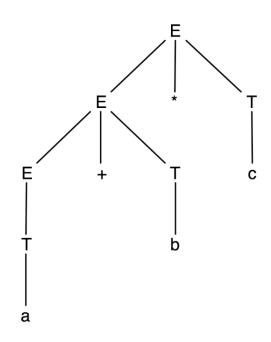
A Different Problem

How about the string a+b*c?

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

 $T \rightarrow a \mid b \mid c \mid (E)$

Doesn't have correct precedence for *



 When a nonterminal has productions for several operators, they effectively have the same precedence

Solution – Introduce new nonterminals

Final Expression Grammar

```
E \rightarrow E+T \mid E-T \mid T lowest precedence operators T \rightarrow T^*P \mid P higher precedence P \rightarrow a \mid b \mid c \mid (E) highest precedence (parentheses)
```

- Controlling precedence of operators
 - Introduce new nonterminals
 - Precedence increases closer to operands
- Controlling associativity of operators
 - Introduce new nonterminals
 - Assign associativity based on production form
 - ➤ E → E+T (left associative) vs. E → T+E (right associative)
 - > But parsing method might limit form of rules

Conclusion

- Context Free Grammars (CFGs) can describe programming language syntax
 - They are a kind of formal language that is more powerful than regular expressions
- CFGs can also be used as the basis for programming language parsers (details later)
 - But the grammar should not be ambiguous
 - > May need to change more natural grammar to make it so
 - Parsing often aims to produce abstract syntax trees
 - > Data structure that records the key elements of program