1. Draw the Decision Tree for Bubble Sort on three elements A, B, C (which start in positions indexed by 1, 2, 3 of an array, respectively). Note that Bubble Sort is inefficient, so it does some redundant comparisons and some nodes will have only one child.

2. Assume that your computer has special hardware that finds the minimum of \(k \) (or fewer) elements in one comparison step. Your answers to this question should have \(n \) and \(k \) as parameters.

 (a) Design an efficient algorithm based on Merge Sort to sort \(n \) elements using this special hardware. (This is an upper bound.)

 (b) Analyze your algorithm. Get the high order term exactly.

 (c) Use decision trees to find a lower bound for sorting when using this special hardware.

 (d) Compare your upper and lower bounds.

3. (a) Assume you have an alphabet of letters from “o” to “u”. Illustrate the operation of radix sort on the following list of English words:

 tote, soup, soot, pout, toot, sups, tour, opts, rout, tors

 (b) Use the words “sup” and “tor” in one English sentence that shows that you understand the meaning of both words.