Problem 1. Assume you have an array \(A[1, \ldots, n] \), where every value is an integer between 1 and \(n \), inclusive. You do not have direct access to the array \(A \). You do have a function \(\text{equal}(i, j) \) that will return \(\text{TRUE} \) if \(A[i] = A[j] \), and FALSE otherwise.

(a) Give a quadratic (\(\Theta(n^2) \)) algorithm that counts the number of pairs \((A[i], A[j])\) \((i \neq j)\) such that \(A[i] = A[j] \). The algorithm can only use a constant amount of extra memory. Just give the “brute force” algorithm.

(b) Analyze exactly how many times the algorithm calls \(\text{equal}(i, j) \) (as a function of \(n \)). Justify.

Problem 2. We are going to generalize Problem 1 to two dimensions. Assume you have a 2-dimensional array \(A[1, \ldots, n; 1, \ldots, n] \), where every value is an integer between 1 and \(n^2 \), inclusive. You do not have direct access to the array \(A \). You do have a function \(\text{square}(i, j, k) \) (where \(1 \leq i < i + k \leq n \) and \(1 \leq j < j + k \leq n \)) that will return \(\text{TRUE} \) if the four values \(A[i, j], A[i + k, j], A[i, j + k], \) and \(A[i + k, j + k] \) are all equal, and FALSE otherwise.

(a) Give a cubic (\(\Theta(n^3) \)) algorithm that counts the number of squares \(A \) has. The algorithm can only use a constant amount of extra memory. Just give the “brute force” algorithm.

(b) Analyze exactly how many times the algorithm calls \(\text{square}(i, j, k) \) (as a function of \(n \)). Justify.

Problem 3. Really hard challenge problem (will not be graded). Use the same conditions as in Problem 2 except every value is an integer between 1 and 2, inclusive.

(a) Give an efficient algorithm to determine if \(A \) has a square.

(b) Analyze exactly how many times the algorithm calls \(\text{square}(i, j, k) \) (as a function of \(n \)). Justify.