CMSC351 Notes on Mathematical Induction Proofs

These are examples of proofs used in cmsc250. These proofs tend to be very detailed. You can
be a little looser.

General Comments
Proofs by Mathematical Induction

e If a proof is by Weak Induction the Induction Hypothesis must reflect that. l.e., you may
NOT write the Strong Induction Hypothesis.

e The Inductive Step MUST explicitly state where the Inductive Hypothesis is used. (Some-
thing like “by IH” is good.)



Example Proof by Weak Induction

Theorem. For n > 1, 3"  4i—2 = 2n>

BASE CASE: Let n = 1. The summation gives

n

1
Z4i—2 = Z4¢—2 = 4.1-2 = 2.
=1

=1

The formula gives
2n? = 2-12 = 2.

The two values are the same.

e INDUCTIVE HYPOTHESIS [Choice I: From n — 1 to nJ:
Assume that the theorem holds for n — 1 (for arbitrary n > 1). Then

n—1
Y 4i-2 = 20n-1)7.
=1

[Tt is optional to simplify the right side. If not, it will have to be done inside the Induction
Step.]

— INDUCTIVE STEP: [Choice Ia: Start with the sum we care about.]

Yrdi—-2 = Z?;ll i + (4n—2) by splitting sum
= 2(n—1)?2 + (4n—2) by TH
= 2(n*—2n+1) + (4n—2) by algebra
= 2. by algebra

So the theorem holds for n.
— INDUCTIVE STEP: [Choice Ib: Start with the induction hypothesis.]

Sil4i-2 = 2(n—1)? by TH
Sl 4i—2 4 (4n—2) = 2(n—1)% + (4n—2) adding 4n — 2 to both sides
Yhi4i—2 = 2(n*—2n+1) + (4n—2) merging the sum on left side
.. and algebra on the right side
= 2. by algebra on the right side

So the theorem holds for n.

e INDUCTIVE HYPOTHESIS: [Choice II: From n to n+ 1]
Assume that the theorem holds for arbitrary n > 1. Then

n
Z4i—2 = 22 .
=1



[The following is optional (but often useful). If you do not do this, you will struggle to make
the right side have the correct form with n replaced by n+ 1. In principle, it should be inside
the Inductive Step. At the very least, it must be clearly distinct from the Inductive Hypothesis.|

NEED TO SHOW:

n+1
d4i-2 =2n+1)? = 2P +2n+1) = 20’ +4n+2.
=1

— INDUCTIVE STEP: [Choice Ila: Start with the sum we care about.]

Sl —2 = Y i+ (4n+1)—2) by splitting sum
= 2n% + (4(n+1)-2) by ITH
= 2n% + (4n+2) by algebra
= mM>4+4An+2. by algebra

This is what we needed to prove, so the theorem holds for n + 1.
— INDUCTIVE STEP: [Choice IIb: Start with the induction hypothesis.]

Sr4i—2 = 2n? by IH
S 4i—2 + (4n+1)—2) = 2n® + (4(n+1)—2) adding 4(n + 1) — 2 to both sides
Z?Ill 4i—-2 = 2n°+4n+2 merging sum on the left side

.. and algebra on the right side

This is what we needed to prove, so the theorem holds for n + 1.

Example Proof by Strong Induction

BASE CASE: [Same as for Weak Induction.]

e INDUCTIVE HYPOTHESIS: [Choice I: Assume true for less than n/
(Assume that for arbitrary n > 1, the theorem holds for all k£ such that 1 <k <mn —1.)
Assume that for arbitrary n > 1, for all k£ such that 1 < k <mn — 1 that

k
> 4i-2 = 27,
i=1
e INDUCTIVE HYPOTHESIS: [Choice II: Assume true for less than n + 1]

(Assume that for arbitrary n > 1 the theorem holds for all k such that 1 < k <n.)
Assume that for arbitrary n > 1, for all k£ such that 1 < k < n that

k
Z4i—2 = 2k2.
=1

INDUCTIVE STEP: [And now a brilliant proof that somehow uses strong induction./



Constructive Induction

[We do this proof only one way, but any of the styles is fine.]

Guess that the answer is quadratic, so it has form an? + bn + c. We will derive the constants a, b, ¢
while proving it by Mathematical Induction.

BASE CASE: Let n = 1. The summation gives

1
zn:zu—z = Z4¢—2 = 4.1-2 = 2.
=1 =1

The formula gives
an’+bn+c = a-1>+b-14¢ = a+b+c.

So, we need a + b+ ¢ = 2.

INDUCTIVE HYPOTHESIS:
Assume that the theorem holds for n — 1 (for arbitrary n > 1). Then

n—1
241'—2 =aln—12+bn—-1)+c.
i=1

[Again, it is optional to simplify the right side.]
INDUCTIVE STEP:

Yordi—2 = Z?;ll 4—-2 + (4n-2) by splitting sum

aln =12 4+bn—1)+c + (4n—2) by IH
a(n®—2n+1)+b(n—1)+c + (4n—2) by algebra

= an® + (—2a+b+4)n + a—b+c—2 by algebra

= an®+bn+c. to make the induction work

The coefficients on each of the powers have to match. This leads to the three simultaneous equations:

b = —2a+b+4
¢c = a—b+c—2
2 = a+b+ec from the base case

The first equation gives a = 2, then the second gives b = 0, and finally the third gives ¢ = 0.



Constructive Induction (Another Example)

Problem: Find an upper bound on F;, in the recurrence
Fop=Fy, 1+ F, 2
where Fy = F1 = 1.

Guess that the answer is exponential, so F}, < ab™. We will derive the constants a, b while proving
it by Mathematical Induction.

BASE CASES: Let n = 0. By definition
F,=F=1
The formula gives
F,<ab"=a’ =a
So, a > 1.
Let n = 1. By definition
F,=F =1
The formula gives
F, < ab® = ab' = ab
So, ab > 1.

INDUCTIVE HYPOTHESIS:
Assume that for arbitrary n > 1, for all k such that 1 < k < n — 1 that Fj, < ab".

INDUCTIVE STEP:
E, F, 14+ F, o by definition
ab™ ! +ab"2 by IH

ab™ . to make the induction work

IAIA

Thus we need to solve
ab” b ab" % < ab™ .
or
¥—-b—-12>0.
By the quadratic formuls, we get

—(-1)+/(-1)2-4-1-1 1++5

b > =
- 2-1 2
Only the positive value can hold. Also, we would like the smallest possible value for b. So we choose
, _ 1tVh
2

From the base cases we get a > 1 (since the other condition is weaker), and now we would like the
smallest possible value for a. So we choose a = 1. This gives

< (1 +2\/5>




Catalan Numbers

(2n)! 4n

Theorem. Forn > 1, A1) 2 (g2

Proof. by Mathematical Induction.
BASE CASE: Easy.

INDUCTION HYPOTHESIS: Assume true for n — 1:
(2(n —1))! - gn—1
(n—1n! = n2 ~

INDUCTION STEP: Alternative I
(2n)! (2n)(2n—1) (2(n —1))!
n!(n+1)! (n—1n (n—1)n!
(2n)(2n — 1) 471
n(n+1) n?

v

by IH

(
(2n)(2n —1) (n+1)?  4n?
(

n(n+1) 4n?2  (n+1)2 n?

(2n)(2n —1) (n+1)2 47

(n—1)n 4n?  (n+1)2
(1-1/2n)(1+1/n) 47

1-1/n (n+1)2
1+1/(2n) —1/(2n?) 47

1-1/n (n+1)2
4n
(n+1)2°

Vv

INDUCTION STEP: Alternative I1
4n 4n?  4n-l
(n+1)2 (n+1)2 n2
4n?  (2(n —1))!
(n+1)2 (n—1)n!

by TH

4n? nn+1) (2n)(2n—1) (2n —1))!

(n+1)2 2n)2n—1) n(n+1)
1 (2n)!
(14+1/n)(1—=1/(2n)) n!(n+1)!
1 (2n)!
(14+1/(2n) —1/(2n?)) nl(n+ 1)!
(2n)!
nl(n+1)! "




