
CMSC417

Computer Networks
Prof. Ashok K. Agrawala

© 2018AshokAgrawala

September 6, 2018
Fall 2018 Sept 6, 2018 1

Overview

• Client-server paradigm
– End systems

– Clients and servers

• Sockets

– Socket abstraction

– Socket programming in UNIX

• File-Transfer Protocol (FTP)

– Uploading and downloading files

– Separate control and data connections

Fall 2018 Sept 6, 2018 2

What is a host?

(from whatis.com)

• a computer or other device that

communicates with other hosts on a

network

• does not include intermediary devices

such as switches or routers (these are

often categorized as nodes)

Fall 2018 Sept 6, 2018 3

End system: computer on the

net

Internet

Also known as a “host”…

Fall 2018 Sept 6, 2018 4

Clients and servers
Client program

• Running on end

host

• Requests service

• e. g. Web browser

Server program

• Running on end

host

• Provides service

• e. g. Web server

GET /index.html

“Site under construction”

Fall 2018 Sept 6, 2018 5

Clients are not necessarily

human

Example: Web crawler (or spider)
• Automated client program

• Tries to discover and download many

Web pages for indexing

• Forms the basis of search engines like

Google

• Indexing allows search engine

functionality to be performed more

efficiently
Fall 2018 Sept 6, 2018 6

Spider client: how it works

• Start with a base list of popular

Web sites

• Download the Web pages

• Parse the HTML files to extract

hypertext links

• Download these Web pages, too

• And repeat, and repeat, and

repeat…

Fall 2018 Sept 6, 2018 7

Client-server communication
Client “sometimes on”

• Initiates a request to

the server when

interested

• e. g. Web browser on your

laptop or cell phone

• Doesn’t communicate

directly with other clients

• Needs to know the

server’s address

Server is “always on”

• Fulfills requests from

many client hosts

• e. g. Web server for the

www.cnn.com Web site

• Doesn’t initiate contact

with the clients

• Needs a fixed, well-

known address so that

clients can access it

Fall 2018 Sept 6, 2018 8

http://www.cnn.com/

(from Wikipedia)

Instead of one server that is always on:

• Hosts can come and go, and change

addresses

• Hosts may have a different address each

time

• Hosts are known as “peers” and are

equally privileged

• Peers make portions of their processing

power available to each other
Fall 2018 Sept 6, 2018 9

Peer-to-peer communication

Peer-to-Peer Network Client-Server Model

(from Wikipedia)

Peer-to-peer communication

Fall 2018 Sept 6, 2018 10

• Any host can request files, send files,

query to find where a file is located,

respond to queries, and forward

queries

• Scalability by harnessing millions of

peers

• Each peer acting as both a client and

server

Example: peer-to-peer file sharing

Fall 2018 Sept 6, 2018 11

Client and server processes

What is the difference between a

program and a process?

Process: a running

program on a host

s = “Hello world”
print(s)

Program: a

collection of code

Fall 2018 Sept 6, 2018 12

Sept 6, 2018Fall 2018 13

Processes

Physical
Memory

Processor

Each Process has its own
• Code
• Address Space

Code

Data

Processor

Code

Data

Processor

Communication between

processes

• Same end host:

• inter-process communication;

• governed by the operating

system on the end host

• Different end hosts:

• exchanging messages;

• governed by network protocols
Fall 2018 Sept 6, 2018 14

Client and server processes

Client process:

process that initiates

communication

Server process:

process that waits to be contacted

Fall 2018 Sept 6, 2018 15

Socket: end point of

communication
When sending a message from one

process to another (e. g. from client to

server), the message must traverse the

underlying network.

socket socket

User process User process

Operating

System
Operating

System

Fall 2018 Sept 6, 2018 16

Socket: end point of

communication

Processes send and receive through a

“socket”. Sockets are like mail slots in a

house where messages can go in and out.

Fall 2018 Sept 6, 2018 17

Socket: end point of

communication

A socket as an Application Programming

Interface (API) supports the creation of

networkapplications.

socket socket

User process User process

Operating

System
Operating

System

Fall 2018 Sept 6, 2018 18

Identifying the receiving

process
The sending process must identify the

receiver.
• Name or address of the receiving end

host

• Identifier that specifies the receiving

process

• Example: to send mail to someone in an

apartment, you need the address of the

building and the apartment number

Fall 2018 Sept 6, 2018 19

Identifying the receiving host

• Destination address that uniquely

identifies the host

• Use an IP address: a 32-bit quantity

Fall 2018 Sept 6, 2018 20

Identifying the receiving

process
• Host may be running many different

processes (just as an apartment

complex has many apartments)

• A destination port uniquely identifies

the socket

• A port number is a 16-bit quantity

that specifies the socket (and

therefore the process) that you want

to access
Fall 2018 Sept 6, 2018 21

Client

Using ports to identify services

Client host

Server host 128.2.194.242

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:80

(i.e., the Web server)

Web server

(port 80)

Echo server

(port 7)

Service request for

128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Server

Fall 2018 Sept 6, 2018 22

Which port number should I

use, and when?

Popular applications have well-known

ports.
• Port 80 for Web

• Port 25 for e-mail

• Port 22 for ssh

• To see more well-known ports, visit

http://www.iana.org

Fall 2018 Sept 6, 2018 23

http://www.iana.org/

Well-known vs. ephemeral

ports

A server has a well-known port (e. g.

port 80); any port between 0 and 1023.

A client will choose an unused ephemeral

(i. e. temporary) port between 1024 and

65535 that will last as long as it is

interacting with the server.

Fall 2018 Sept 6, 2018 24

Uniquely identified traffic

• both the server and the client each

have an IP address and a port

number

• their traffic can now be uniquely

identified

• an underlying transport protocol

used for their communication (e. g.

TCP or UDP)

Fall 2018 Sept 6, 2018 25

Delivering the data: division of

labor
• Network

– Deliver data packet to the destination host

– Based on the destination IP address

• Operating system
– Deliver data to the destination socket

– Based on the protocol and destination port

number

• Application
– Read data from the socket

– Interpret the data (e. g. render a Web page)
Fall 2018 Sept 6, 2018 26

UNIX socket API

• Socket interface
– Originally provided in Berkeley UNIX

– Later adopted by all popular operating systems

– Simplifies porting applications to different OSes

• In UNIX, everything is like a file
– All input is like reading a file

– All output is like writing a file

– File is represented by an integer file descriptor

• System calls for sockets
– Client: create, connect, write, read, close

– Server: create, bind, listen, accept, read, write,

close

Fall 2018 Sept 6, 2018 27

Typical client program

1. Prepare to communicate

a. Create a socket

b. Determine server address and port number

c. Initiate the connection to the server

2. Exchange data with the server
– Write data to the socket

– Read data from the socket

– Do stuff with the data (e. g. render a Web page)

3. Close the socket

Fall 2018 Sept 6, 2018 28

Creating a socket with socket()

int socket(int domain, int type, int
protocol)

• Returns a descriptor (or handle) for the socket

• Originally designed to support any protocol suite

• Domain: protocol family (PF_INET for the Internet)

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream

– SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
– UNSPEC: unspecified

– (PF_INET and SOCK_STREAM already implies TCP)

Fall 2018 Sept 6, 2018 29

Connecting the socket to the

server
• Translating the server’s name to an address

– struct hostent *gethostbyname(char *name)
– Argument: the name of the host (e.g. “www.cnn.com”)

– Returns a structure that includes the host address

• Identifying the service’s port number
– struct servent *getservbyname(char *name, char

*proto)
– Arguments: service (e. g. ftp) and protocol (e. g. tcp)

• Establishing the connection

– int connect(int sockfd, struct sockaddr
*server_address, socketlen_t addrlen)

– Arguments: socket descriptor, server address, and address

size

– Returns 0 on success, and -1 if an error occurs
Fall 2018 Sept 6, 2018 30

http://www.cnn.com/

Sending data

ssize_t write(int sockfd, void
*buf, size_t len)

• Arguments: socket descriptor, pointer to

buffer of data to send, and length of the

buffer

• Returns the number of characters written,

and -1 on error

Fall 2018 Sept 6, 2018 31

Receiving data

ssize_t read(int sockfd, void
*buf, size_t len)

• Arguments: socket descriptor, pointer to

buffer to place the data, size of the buffer

• Returns the number of characters read

(where 0 implies “end of file”), and -1 on

error

Fall 2018 Sept 6, 2018 32

Closing the socket
int close(int sockfd)

Fall 2018 Sept 6, 2018 33

Byte ordering: little and big

endian
• Hosts differ in how they store data (e. g. four-byte

number (byte3, byte2, byte1, byte0))

• Little endian (“little end comes first”) Intel PCs!!!
– Low-order byte stored at the lowest memory location

– Byte0, byte1, byte2, byte3

• Big endian (“big end comes first”)
– High-order byte stored at lowest memory location

– Byte3, byte2, byte1, byte 019IP is big endian (aka “network byte

order”)

– Use htons() and htonl() to convert to network byte order

– Use ntohs() and ntohl() to convert to host order

Fall 2018 Sept 6, 2018 34

Why can’t sockets hide these

details?
• Dealing with endian differences is tedious.

• Couldn’t the socket implementation deal with this by

swapping the bytes as needed? No, swapping

depends on the data type.
– Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)

– Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. (byte 0,

byte 1, byte 2, byte 3)

– String of one-byte characters: (char 0, char 1, char 2, …) in

both cases

• Socket layer doesn’t know the data types
– Sees the data as simply a buffer pointer and a length

– Doesn’t have enough information to do the swapping

Fall 2018 Sept 6, 2018 35

Servers differ from clients

• Passive open. Prepare to accept

connection, but don’t actually establish

one until hearing from a client.

• Hearing from multiple clients. Allow a

backlog of waiting clients in case several

try to start a connection at once

• Create a socket for each client. Upon

accepting a new client, create a new

socket for the communication

Fall 2018 Sept 6, 2018 36

Typical server program

• Prepare to communicate
– Create a socket

– Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit

– Accept an incoming connection from a client

• Exchange data with the client over new socket
– Receive data from the socket

– Do stuff to handle the request (e. g. get a file)

– Send data to the socket

– Close the socket

• Repeat with the next connection request

Fall 2018 Sept 6, 2018 37

Server preparing its socket

• Bind socket to the local address and port number

– int bind (int sockfd, struct sockaddr
*my_addr, socklen_t addrlen)

– Arguments: socket descriptor, server address, address length

– Returns 0 on success, and -1 if an error occurs

• Define how many connections can be pending
– int listen(int sockfd, int backlog)

– Arguments: socket descriptor and acceptable backlog

– Returns 0 on success, and -1 on error

Fall 2018 Sept 6, 2018 38

Accepting a new client

connection

int accept(int sockfd, struct
sockaddr *addr, socketlen_t
*addrlen)

• Arguments: socket descriptor, structure

that will provide client address and port,

and length of the structure

• Returns descriptor for a new socket for

this connection

Fall 2018 Sept 6, 2018 39

Questions

Q. What happens if no clients are around?

A.The accept() call blocks waiting for a client

Q. What happens if too many clients are around?

A. Some connection requests don’t get through, but

that’s okay, because the Internet makes no

promises

Fall 2018 Sept 6, 2018 40

socket()

bind()

listen()

accept()

read()

write()

Putting it all together

block

process

request

Client

socket()

connect()

write()

read()

Server

Fall 2018 Sept 6, 2018 41

Serving one request at a time?

Inefficient!
• The server can only process one request

at a time

• All other clients must wait until previous

one is done

Fall 2018 Sept 6, 2018 42

Solution: Time share the machine

Alternate between fulfilling different requests.
1. Do a little work on one request, then switch to

another. Examples:
- read HTTP request

- locate the associated file

- read the disk

- transmit

2. Start a new process to handle each request.

(OS shares CPU across processes)

OR try some hybrid of these two approaches.

Fall 2018 Sept 6, 2018 43

Wanna see real clients and

servers?
• Apache Web server

– Open source server first released in 1995

– Name derives from “a patchy server” ;-)

– Software available online at

http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server

– http://www.isc.org/index.pl?/sw/bind/
Fall 2018 Sept 6, 2018 44

http://www.apache.org/
http://www.mozilla.org/developer/
http://www.sendmail.org/

Advice for assignments

• Familiarize yourself with the socket API

– Read the online references

– Read the manual pages (e. g. man socket)

– Feeling self-referential? Do man man!

• Write a simple socket program first

– e. g. simple echo program

– e. g. simple FTP client that connects to server

Fall 2018 Sept 6, 2018 45

File Transfer Protocol (FTP)
• Allows a user to copy files to/from remote

hosts. The client program…
– connects to FTP server

– provides a login id and password

– allows the user to explore the directories

– and download and upload files with the server

• A predecessor of the Web (RFC 959 in 1985).

It requires users to…
– know the name of the server machine

– have an account on the machine

– find the directory where the files are stored

– know whether the file is text or binary

– know what tool to run to render and edit the file

• No URL, hypertext, or helper applications

Fall 2018 Sept 6, 2018 46

FTP protocol

• Control connection (on server port 21)
– Client sends commands and receives responses

– Connection persists across multiple commands

• FTP commands
– Specification includes more than 30 commands

– Each command ends with a carriage return and a line feed

(“\r\n” in C)

– Server responds with a three-digit code and optional human-

readable text (e. g. “226 transfer completed”)

• Try it at the UNIX prompt
– ftp ftp.cs.umd.edu

– ID “anonymous” and password as your e-mail address

Fall 2018 Sept 6, 2018 47

ftp://ftp.cs.princeton.edu/

Example commands:

authentication

• USER: specify the user name to log in

as

• PASS: specify the user’s password

Fall 2018 Sept 6, 2018 48

Example commands: exploring

the files

• LIST: list the files for the given file

specification

• CWD: change to the given directory

Fall 2018 Sept 6, 2018 49

Example commands:

downloading and uploading files

• TYPE: set type to ASCII (A) or binary

image (I)

• RETR: retrieve the given file

• STOR: upload the given file

Fall 2018 Sept 6, 2018 50

Example commands:

closing the connection

QUIT: close the FTP connection

Fall 2018 Sept 6, 2018 51

Server response codes
Code Name Meaning

1XX Positive Preliminary
Reply

The action is being started but expect another reply
before sending the next command.

2XX Positive Completion
Reply

The action succeeded and a new command can be sent.

3XX Positive Intermediary
Reply

The command was accepted but another command is
now
required.

4XX Transient Negative
Completion Reply

The command failed and should be retried later.

5XX Permanent Negative
Completion Reply

The command failed and should not be retried.

Fall 2018 Sept 6, 2018 52

FTP data transfer
Separate data connections:

• To send lists of files (LIST)

• To retrieve a file (RETR)

• To upload a file (STOR)

data

Fall 2018 Sept 6, 2018 53

control

Creating the data connection

The client acts like a server.

• Creates a socket
• Acquires an ephemeral port number

• Binds an address and port number

• Waits to hear from the FTP server

socket
Fall 2018 Sept 6, 2018 54

control

Creating the data connection
The server doesn’t know the port

number!

• So, the client tells the server the port

number

• Using the PORT command on the

control connection

Fall 2018 Sept 6, 2018 55

PORT <IP address, port #>

Creating the data connection
The server initiates the data

connection.

• The server connects to the socket on

the client machine

• The client accepts to complete the

connection

socket
Fall 2018 Sept 6, 2018 56

Out-of-band control

(from Wikipedia)

• a characteristic of network protocols

• passes control data on a separate

connection from main data

• Control data: e. g. user ID, password,

put/get commands

Fall 2018 Sept 6, 2018 57

Why out-of-band control?
• Avoids need to mark the end of the data

transfer
– Data transfer ends by closing of data connection

– Yet, the control connection stays up

• Aborting a data transfer
– Can abort a transfer without killing the control

connection

– This avoids requiring the user to log in again

– Done with an ABOR on the control connection

• Third-party file transfer between two hosts
– Data connection could go to a different hosts

– Sends a different client IP address to the server

– e. g. user coordinates transfer between two servers
Fall 2018 Sept 6, 2018 58

Summary

• Client-server paradigm
– Model of communication between end hosts

– Client asks, and server answers

• Sockets
– Simple byte-stream and messages abstractions

– Common application programmable interface

• File-Transfer Protocol (FTP)
– Protocol for downloading and uploading files

– Separate control and data connections (out-of-

band control)

Fall 2018 Sept 6, 2018 59

