CMSC417

Computer Networks Prof. Ashok K. Agrawala

© 2017 Ashok Agrawala

September 25, 2018

Message, Segment, Packet, and Frame

Hierarchical Routing

Full table for 1A		
Dest.	Line	Hops
1A	-	_
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗA	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5
	(b)	

Hierarchical table for 1A

Dest.	Line	Hops
1A	-	_
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	1C	4

(a)

(C)

Broadcast Routing

- Broadcast sends a packet to all nodes
 - RPF (Reverse Path Forwarding): send broadcast received on the link to the source out all remaining links
 - Alternatively, can build and use sink trees at all nodes

Multicast Routing (1) – Dense Case

• Uses a different tree for each group and source

CMSC417 Set 6

Multicast Routing (2) – Sparse Case

• CBT (Core-Based Tree) uses a single tree to multicast

• Tree is the sink tree from core node to group members

Anycast Routing

<u>Anycast</u> sends a packet to one (nearest) group member

• Falls out of regular routing with a node in many places

Routing for Mobile Hosts

A WAN to which LANs, MANs, and wireless cells are attached.

Routing for Mobile Hosts

- Mobile hosts can be reached via a home agent
 - Fixed home agent tunnels packets to reach the mobile host; reply can optimize path for subsequent packets
 - No changes to routers or fixed hosts

Routing in Ad Hoc Networks

Possibilities when the routers are mobile:

1. Military vehicles on battlefield.

- No infrastructure.
- 2.A fleet of ships at sea.
 - All moving all the time
- 3. Emergency works at earthquake .
 - The infrastructure destroyed.

4.A gathering of people with notebook computers.

• In an area lacking 802.11.

Route Discovery

- (a) Range of A's broadcast.
- (b) After B and D have received A's broadcast.
- (c) After C, F, and G have received A's broadcast.
- (d) After E, H, and I have received A's broadcast.

Shaded nodes are new recipients. Arrows show possible reverse routes.

Route Discovery (2)

Source Request Destir	ess sequence #	Dest.	Hop
address ID addr		sequence #	count

Format of a ROUTE REQUEST packet.

Route Discovery (3)

Source Destination address address	Destination sequence #	Hop count	Lifetime
------------------------------------	------------------------	--------------	----------

Format of a ROUTE REPLY packet.

Route Maintenance

	Next		Active	Other
Dest.	hop	Distance	neighbors	fields
A	А	1	F, G	
В	В	1	F, G	
С	В	2	F	
E	G	2		
F	F	1	A, B	
G	G	1	A, B	
Н	F	2	A, B	
1	G	2	A, B	
		(a)		

(a) D's routing table before G goes down.
(b) The graph after G has gone down.

14

Congestion Control

- General Principles of Congestion Control
- Congestion Prevention Policies
- Congestion Control in Virtual-Circuit Subnets
- Congestion Control in Datagram Subnets
- Load Shedding
- Jitter Control

Congestion

When too much traffic is offered, congestion sets in and performance degrades sharply.

CMSC417 Set 6

General Principles of Congestion Control

1. Monitor the system .

- detect when and where congestion occurs.
- 2.Pass information to where action can be taken.
- 3.Adjust system operation to correct the problem.

Congestion Control (3) – Approaches

Network must do its best with the offered load

- Different approaches at different timescales
- Nodes should also reduce offered load (Transport)

Congestion Prevention Policies

Layer	Policies
Transport	 Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy Timeout determination
Network	 Virtual circuits versus datagram inside the subnet Packet queueing and service policy Packet discard policy Routing algorithm Packet lifetime management
Data link	 Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy

Congestion Control in Virtual-Circuit Subnets

(a) A congested subnet. (b) A redrawn subnet, eliminates congestion and a virtual circuit from A to B.

CMSC417 Set 6

Traffic-Aware Routing

Choose routes depending on traffic, not just topology

- E.g., use *EI* for West-to-East traffic if *CF* is loaded
- But take care to avoid oscillations

Traffic Throttling

Congested routers signal hosts to slow down traffic

 ECN (Explicit Congestion Notification) marks packets and receiver returns signal to sender

Load Shedding (1)

When all else fails, network will drop packets (shed load)

- Can be done end-to-end or link-by-link
- Link-by-link (right) produces rapid relief

Load Shedding (2)

End-to-end (right) takes longer to have an effect, but can better target the cause of congestion

Hop-by-Hop Choke Packets

(a) A choke packet that affects only the source.

(b) A choke packet that affects each hop it passes through.

Jitter Control

CMSC417 Set 6

(b) Low jitter.

(a) High jitter.