CMSC417

Computer Networks Prof. Ashok K. Agrawala

© 2018 Ashok Agrawala

October 4, 2018

CMSC417

Message, Segment, Packet, and Frame

Internet Control Protocols (1)

IP works with the help of several control protocols:

- <u>ICMP</u> is a companion to IP that returns error info
 - Required, and used in many ways, e.g., for traceroute
- <u>ARP</u> finds Ethernet address of a local IP address
 - Glue that is needed to send any IP packets
 - Host queries an address and the owner replies
- <u>DHCP</u> assigns a local IP address to a host
 - Gets host started by automatically configuring it
 - Host sends request to server, which grants a lease

Internet Control Protocols (2)

Main ICMP (Internet Control Message Protocol) types:

Message type	Description
Destination unreachable	Packet could not be delivered
Time exceeded	Time to live field hit 0
Parameter problem	Invalid header field
Source quench	Choke packet
Redirect	Teach a router about geography
Echo and Echo reply	Check if a machine is alive
Timestamp request/reply	Same as Echo, but with timestamp
Router advertisement/solicitation	Find a nearby router

Internet Control Protocols (3)

• ARP (Address Resolution Protocol) lets nodes find target Ethernet addresses [pink] from their IP addresses

Frame	Source IP	Source Eth.	Destination IP	Destination Eth.
Host 1 to 2, on CS net	IP1	E1	IP2	E2
Host 1 to 4, on CS net	IP1	E1	IP4	E3
Host 1 to 4, on EE net	IP1	E4	IP4	E6

Dynamic Host Configuration Protocol

Operation of DHCP.

Label Switching and MPLS (1)

Transmitting a TCP segment using IP, MPLS, and PPP.

CMSC417 Set 6

Label Switching and MPLS (2)

Forwarding an IP packet through an MPLS network

CMSC417 Set 6

What is IPv6

- Also known as IPng (next generation)
- A new version of the Internet Protocol
 - Primarily designed to extend address space
 - Enhancements and new features

What IP is touching

Why is IPv6 Here

• IPv6 provides a platform for new Internet functionality that will be needed in the immediate future, and provide flexibility for further growth and expansion.

- Addressing
- Header
- Security
- Privacy
- Autoconfiguration
- Routing
- Quality of Service

- Expanded addressing and routing capabilities
 - 128-bit addresses
 - Multicast routing is now scalable with "scope" field
 - Defined usage of "Anycast" addressing

- Simplified header format
 - Some IPv4 fields dropped or made optional
 - IPv6 packet header only twice the size of v4 header, even though address is four times a v4 address

- Extension headers
 - "Options" are now placed in separate headers
 - "Options" are now any length
 - Router doesn't have to look at most "Options"*

* except the hop-by-hop options

- Authentication and Privacy
 - Basic required support for authentication and data integrity
 - Basic support for Payload encryption
 - Support for Header and payload encryption

- Auto-configuration
 - Self-configuring nodes for local links
 - Auto-configuration for site links
 - Stateless uses "Router Advertisement"
 - Cost savings
 - Home market potential
 - Stateful uses "DHCPv6"
 - Centralized management
 - New "v6" features

- Source Routing
 - Support for Source Demand Routing Protocol (SDRP)
 - Sender can specify packet route
 - Destination can return packet via same route

- Route Aggregation
 - Address Hierarchy
 - Deployed in "Groups"
 - Defined in RFC 2374

- Quality of Service/Class of Service
 - (flow labels)
 - New 20 bit field for labeling traffic "flows"
 - Continued support for current IPv4 standards

- Transition technologies
 - Required by RFC 1726
 - Various methodologies exist today
 - IPv6 Relays and Gateways (6to4) RFC 3056
 - Tunnels (automatic and manual)
 - - Broker RFC3053
 - NAT-PT RFC 2766
 - and many others...

- • IPv4 addresses 2³² = 4,294,967,296
- IPv6 addresses 2¹²⁸ =
- 340,282,366,920,938,463,463,374,607,431,768,211,456
- 340 undecillion –US, 340 sextillion-UK
- • 79,228,162,514,264,337,593,543,950,33
 - times more v6 addresses than v4
- If IP addresses weighed one gram each
 - IPv4 = 1/7th of the Empire State Building
 - IPv6 = 56 billion(US) earths

- No Broadcast in IPv6
 - Replaced by Multicast
 - Multicast scope provides flexibility

- Uncontrolled fragmentation in IPv4
 - Only a source node can fragment IPv6
 - Limits packet size to minimum MTU in path (Maximum Transmission Unit)

• Extension Headers

 Supports multiple headers including upper layer headers. Provides for future enhancements.

- Other features inherent to IPv6
 - Security encryption
 - Header encryption
 - Sender authentication
 - Privacy

IPv6 Specifications

IPv6 specifications

- IPv6 RFC 2460
- IPv6 Neighbor Discovery RFC 2461
- IPv6 Auto Configuration RFC 2462

RFC 2460

- IPv6 Terminology
- IPv6 Packet Header
- IPv6 Addressing
- IPv6 Header Extensions

- Node A device that implements IPv6.
 - A node can be a host or a router
 - A node can be an entertainment system
 - A node can be a smart phone
 - A sensor node

- Router A node that forwards IPv6 packets not explicitly addressed to itself.
 - Routers operate at the Network Layer
 - Routers use metrics to determine optimal paths which network traffic should be forwarded

- Host Any node that is not a router
 - A host can be your computer at home
 - A host can be your smart phone or tablet

- Upper Layer A protocol layer immediately above IPv6.
 - TCP/UDP
 - ICMP
 - OSPF
 - And many more...

- Link A communication facility or medium over which nodes can communicate at the Data Link Layer.
 - Ethernet
 - Token ring
 - Frame relay
 - A "tunnel"
 - And many more...

ethernet			
MTU 1500			

- Neighbors Nodes attached to the same link.
 - -2 PC's on a hub can be neighbors
 - Hosts and routers can be neighbors

- Interface A node's attachment to a link.
 - A Network Interface Card (NIC) is an interface
 - A node can have more than one interface
 - Routers often have multiple interfaces
 - A PC's dial-up adapter is an interface

- Address An IPv6-layer identifier for an interface or a set of interfaces.
 - 128-bit address
 - Prefix represented by /nn bits
 - New address structure (to be discussed)

3ffe:80f0:ffff:1::202/64

IPv6 Addressing

- eight groups of four <u>hexadecimal</u> digits,
 - each group representing 16 bits (two octets).
 - The groups are separated by <u>colons</u> (:).
- 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Simplifications
 - Leading zeroes in a group may be omitted.
- 2001:db8:85a3:0:0:8a2e:370:7334
 - One consecutive group of zero value may be replaced with a single empty group using two consecutive colons (::).
- 2001:db8:85a3::8a2e:370:7334

- Packet An IPv6 header plus payload.
 - Cannot be larger than the "Path MTU"*
 - Includes header and header extensions
 - Delivered in frames

- Link MTU The maximum transmission unit, or packet size, given in octets, that can be conveyed in one piece over a link.
 - MTU Maximum Transmission Unit
 - Ethernet MTU is 1500 octets
 - 4mb Token Ring MTU is 4464 octets

- Path MTU The minimum link MTU of all the links in a path between a source node and a destination node.
 - The smallest MTU in a network path

IPv6 Packet

- Similar to IPv4
- No options with padding
- New fields
- Is only 2x length even though address is 4x

• Compare to IPv4 header

					1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3
0 1 2 3	4 5	6	7	89	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
Version=4	Version=4 IHL Type of Service									Total Length																
Identifier											Flags Fragment Offset															
Time to Live						Protocol					Header Checksum															
Source Address																										
Destination Address																										
								Ор	tior	ns +	Pa	addi	ing													

•IPv6 Header with no header extensions

•Carried in frames

•8 fields

•Version – 4 bits – Identifies the version of IP protocol

•0100 (4) for IPv4

•0110 (6) for IPv6

<u>V4</u>

•Traffic Class – 8 bits – Allows originating nodes and/or routers to distinguish between different classes or priorities of IPv6 packets

•QoS is an example implementation

•RSVP uses Traffic Class_{C417 Set 6}

•Flow Label – 20 bits – Used to "label" a flow of traffic.

•May be used to request special handling

•RFC 1809 "Using the Flow Label Field in IPv6"

•Payload Length – 16 bits – Length, in octets, of the payload

•Payload is balance of IPv6 packet following header

•Extension headers are part of payload

•Jumbo Payloads*

•Next Header – 8 bits – Identifies the "extension" header immediately following

•Packet may have zero, one, or more extension headers

•Extension header order is important*

CMSC417 Set 6

•Hop Limit – 8 bits – Maximum number of **hops** an IPv6 packet can be forwarded.

•Similar to IPv4 TTL, but NOT time

•Decremented by each node on path

•Source Address – 128-bits

• versus IPv4 32-bit

______ ⁄

• versus IPv4 32-bit

- What are Extension Headers?
- How are they identified in the IPv6 Header?
- Extension Header Order
- Extension Header Specifics

- Upper layer headers and options
 - Not examined by nodes on path
 - Allows flexibility

•Next Header – 8 bits – Identifies the "extension" header immediately following

•Packet may have zero, one, or more extension headers

•Extension header order is important*

CMSC417 Set 6

- IPv6 Header
- Hop-by-Hop
- Routing Header
- Fragment Header

- Authentication Header
- Encapsulating
 Security Payload
- Upper Layer protocol

- 0 Hop-by-Hop Options RFC 2460
 - Must be first header extension
 - Examined by every node on a delivery path
 - Supports Jumbo payload >65535 <4 billion
 - Cannot use Jumbo with Fragment
 - Only one allowed per packet

Example Hop-by-Hop Extension Header

•Next Header field identifies the header immediately following.

•Header Extension Length identifies the length of the hop-byhop extension header, in octets, not including the first 8 octets.

Example Hop-by-Hop Extension Header

• Options - Variable-length field, of length such that the complete Hop-by-Hop Options header is an integer multiple of 8 octets long. Contains one or more TLV-encoded options. (type-length-value)

Example Hop-by-Hop Extension Header -continued

•TLV field is used in Hop-by-Hop header and Destination header.

- 1 ICMPv4
 - Continued support for ICMPv4
 - New header for ICMPv6
 - Internet Control Message Protocol

- 6 TCP Transmission Control Protocol
 - Provides reliable delivery
 - Upper Layer header

- 17 UDP User Datagram Protocol
 - Unreliable delivery
 - Upper Layer header

- 43 Routing Options RFC 2460
 - Lists one or more IPv6 nodes to be "visited" on the way to a packets destination
 - Not looked at by each node on path

- 44 Fragmentation Options RFC 2460
 - Only the source node can fragment a packet in IPv6
 - Expected that packets sent are no larger than path-MTU

- 50 Encapsulating Security Payload RFC 2406
 - Provides Encryption security
 - Confidentiality
 - Data origin Authentication
 - Connectionless integrity

- 51 Authentication Options RFC 2402
 - Provides connectionless integrity
 - Data origin Authentication

- 58 ICMPv6 RFC 2463
 - ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets
 - Is an integral part of IPv6 and MUST be fully implemented by every IPv6 node
 - Used for Neighbor Discovery

• 59 – No next header – RFC 2460

 There will be no Extension Header following this header

- 60 Destination Options RFC 2460
 - Used to carry optional information for the Destination
IPv6 Extension Headers

IPv6 Header Next Header = 6 TCP	TCP Header and Data	
---------------------------------------	------------------------	--

IPv6 Header	Routing Header	TCP Header
Next Header = 43 Routing Header	Next Header = 6 TCP	and Data

IPv6 Header	Routing Header	Fragment Header	Fragment of TCP
Next Header = 43	Next Header = 44	Next Header = 6	Header and Data
Routing Header	Fragment	TCP	