
CMSC 417

Computer Networks

Prof. Ashok K Agrawala

© 2018 Ashok Agrawala

October 11, 2018

Message, Segment, Packet, and Frame

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Ethernet frame Ethernet frameSONET frameOctober 11, 2018

Error Control and Flow Control (3)

October 11, 2018

Flow control example: A’s data is limited by B’s
buffer

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

3 4 5 6

3 4 5 6

7 8 9 10

B’s Buffer

October 11, 2018

Acknowledgements & Timeouts

• An acknowledgement (ACK) is a packet sent by one host in response to a packet it
has received
• Making a packet an ACK is simply a matter of changing a field in the transport header

• Data can be piggybacked in ACKs

• A timeout is a signal that an ACK to a packet that was sent has not yet been
received within a specified timeframe
• A timeout triggers a retransmission of the original packet from the sender

• How are timers set?

October 11, 2018

Propagation Delay

• Propagation delay is defined as the delay between
transmission and receipt of packets between hosts

• Propagation delay can be used to estimate timeout
period

• How can propagation delay be measured?

• What else must be considered in the measurement?

Reliable Transmission

• Transfer frames without errors
• Error Correction

• Error Detection

• Discard frames with error

• Acknowledgements and Timeouts

• Retransmission

• ARQ – Automatic Repeat Request

October 11, 2018

Stop and Wait with 1-bit Seq No

October 11, 2018

Stop and Wait Protocols

• Simple

• Low Throughput
• One Frame per RTT

• Increase throughput by having more frames in flight
• Sliding Window Protocol

October 11, 2018

Stop-and-Wait – Error-free channel

October 11, 2018

Protocol (p2) ensures sender can’t outpace receiver:
• Receiver returns a dummy frame (ack) when ready

• Only one frame out at a time – called stop-and-wait

• We added flow control!

Sender waits to for ack after
passing frame to physical layer

Receiver sends ack after passing
frame to network layer

Stop-and-Wait – Noisy channel (1)

October 11, 2018

ARQ (Automatic Repeat reQuest) adds error control
• Receiver acks frames that are correctly delivered

• Sender sets timer and resends frame if no ack)

For correctness, frames and acks must be numbered
• Else receiver can’t tell retransmission (due to lost ack or

early timer) from new frame

• For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop and Wait

October 11, 2018

Duplicate
Frames

Stop-and-Wait – Noisy channel (2)

October 11, 2018

Sender loop (p3):

Send frame (or retransmission)
Set timer for retransmission
Wait for ack or timeout

If a good ack then set up for the next
frame to send (else the old frame
will be retransmitted)

{

Stop-and-Wait – Noisy channel (3)

October 11, 2018

Receiver loop (p3):

Wait for a frame

If it’s new then take
it and advance
expected frame

Ack current frame

October 11, 2018

Stop-and-Wait Process

• Sender doesn’t send next packet until he’s sure receiver has received the last packet

• The packet/Ack sequence enables reliability

• Sequence numbers help avoid problem of duplicate packets

• Problem: keeping the pipe full

• Example
• 1.5Mbps link x 45ms RTT = 67.5Kb (8KB) delay bandwidth product
• 1KB frames implies 1/8th link utilization

Sender Receiver

October 11, 2018

Solution: Pipelining via Sliding Window

• Allow multiple outstanding (un-ACKed) frames

• Upper bound on un-ACKed frames, called window

Sender Receiver

T
im

e

…
…

October 11, 2018

Buffering on Sender and Receiver

• Sender needs to buffer data so that if data is lost, it can be resent

• Receiver needs to buffer data so that if data is received out of order, it
can be held until all packets are received
• Flow control

• How can we prevent sender overflowing receiver’s buffer?
• Receiver tells sender its buffer size during connection setup

• How can we insure reliability in pipelined transmissions?
• Go-Back-N

• Send all N unACKed packets when a loss is signaled
• Inefficient

• Selective repeat
• Only send specifically unACKed packets
• A bit trickier to implement

October 11, 2018

Sliding Window: Sender
• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

• send window size (SWS)
• last acknowledgment received (LAR)
• last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives
• Buffer up to SWS frames

SWS

LAR LFS

… …

October 11, 2018

Sliding Window: Receiver
• Maintain three state variables

• receive window size (RWS)
• largest frame acceptable (LFA)
• last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
• if LFR < SeqNum < = LFA accept
• if SeqNum < = LFR or SeqNum > LFA discarded

• Send cumulative ACKs – send ACK for largest frame such that all frames less
than this have been received

 RWS

LFR LFA

… …

October 11, 2018

Sequence Number Space
• SeqNum field is finite; sequence numbers wrap around

• Sequence number space must be larger then number of outstanding
frames

• SWS <= MaxSeqNum-1 is not sufficient
• suppose 3-bit SeqNum field (0..7)
• SWS=RWS=7

• sender transmit frames 0..6
• arrive successfully, but ACKs lost
• sender retransmits 0..6
• receiver expecting 7, 0..5, but receives the original incarnation of 0..5

• SWS < (MaxSeqNum+1)/2 is correct rule

• Intuitively, SeqNum “slides” between two halves of sequence
number space

Sequence Number Space

October 11, 2018

For correctness, we require:
• Sequence numbers (s) at least twice the window (w)

Originals OriginalsRetransmits Retransmits

Error case (s=8, w=7) – too
few sequence numbers

Correct (s=8, w=4) – enough
sequence numbers

New receive window overlaps
old – retransmits ambiguous

New and old receive window
don’t overlap – no ambiguity

Go-Back-N

October 11, 2018

Receiver only accepts/acks frames that arrive in order:
• Discards frames that follow a missing/errored frame

• Sender times out and resends all outstanding frames

Go-Back-N

October 11, 2018

Tradeoff made for Go-Back-N:
• Simple strategy for receiver; needs only 1 frame

• Wastes link bandwidth for errors with large windows; entire window is
retransmitted

Selective Repeat

October 11, 2018

Receiver accepts frames anywhere in receive window
• Cumulative ack indicates highest in-order frame

• NAK (negative ack) causes sender retransmission of a missing frame before a
timeout resends window

Selective Repeat

October 11, 2018

Tradeoff made for Selective Repeat:
• More complex than Go-Back-N due to buffering at receiver and multiple

timers at sender

• More efficient use of link bandwidth as only lost frames are resent
(with low error rates)

Sliding Window Protocols

October 11, 2018

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/

http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html

http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP5.html

http://www2.rad.com/networks/2004/sliding_window/

http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/
http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html
http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP5.html
http://www2.rad.com/networks/2004/sliding_window/

Throughput limits

• Buffers

• Bandwidth – subnet’s carrying capacity
• K TPDUs per second

• X paths then total of XK

• Flow control to manage
• Manage window size

• If network can handle c TPDUs/sec and Cycle time is r then the window size should be cr

October 11, 2018

Multiplexing

• Kinds of transport / network sharing that can occur:
• Multiplexing: connections share a network address

• Inverse multiplexing: addresses share a connection

October 11, 2018

Multiplexing Inverse Multiplexing

Crash Recovery

• Network Failures
• Transport layer handles

• Connectionless

• Connection oriented

• Host Crashes
• Server crash and may reboot

• Send broadcast asking clients to inform of prior connections (stop and wait protocol)
• Client – one TPDU outstanding or none outstanding

October 11, 2018

Crash Recovery

October 11, 2018

Application needs to help recovering from a crash
• Transport can fail since A(ck) / W(rite) not atomic

Congestion Control

October 11, 2018

Two layers are responsible for congestion
control:

• Transport layer, controls the offered load [here]

• Network layer, experiences congestion [previous]

• Desirable bandwidth allocation »

• Regulating the sending rate »

• Wireless issues »

Desirable Bandwidth Allocation (1)

October 11, 2018

Efficient use of bandwidth gives high goodput, low delay

Delay begins to rise sharply
when congestion sets in

Goodput rises more slowly than
load when congestion sets in

Desirable Bandwidth Allocation (2)

October 11, 2018

Fair use gives bandwidth to all flows (no starvation)
• Max-min fairness gives equal shares of bottleneck

Bottleneck link

Desirable Bandwidth Allocation (3)

October 11, 2018

We want bandwidth levels to converge quickly when traffic patterns
change

Flow 1 slows quickly
when Flow 2 starts

Flow 1 speeds up
quickly when Flow 2
stops

Regulating the Sending Rate (1)

October 11, 2018

Sender may need to slow
down for different
reasons:
• Flow control, when the

receiver is not fast
enough [right]

• Congestion, when the
network is not fast
enough [over]

A fast network feeding a low-capacity receiver 
flow control is needed

Regulating the Sending Rate (2)

October 11, 2018

Our focus is dealing
with this problem –
congestion

A slow network feeding a high-capacity receiver 
congestion control is needed

Regulating the Sending Rate (3)

October 11, 2018

Different congestion signals the network may use to tell the transport endpoint to
slow down (or speed up)

Regulating the Sending Rate (3)

October 11, 2018

If two flows increase/decrease their bandwidth in
the same way when the network signals free/busy
they will not converge to a fair allocation

+/– percentage

+ /– constant

Regulating the Sending Rate (4)

October 11, 2018

The AIMD (Additive Increase Multiplicative
Decrease) control law does converge to a fair and
efficient point!
• TCP uses AIMD for this reason

User 1’s bandwidth

U
se

r
2

’s
 b

an
d

w
id

th

Wireless Issues

October 11, 2018

Wireless links lose packets due to transmission errors
• Do not want to confuse this loss with congestion

• Or connection will run slowly over wireless links!

Strategy:
• Wireless links use ARQ, which masks errors

A Simple Transport Protocol

•The Example Service Primitives

•The Example Transport Entity

•The Example as a Finite State Machine

October 11, 2018

Similar to TCP but simpler

Service Primitives

• Connect
• Parameters – local and remote TSAPs

• Caller is blocked

• If connection succeeds the caller is unblocked and transmission starts

• Listen – specifies a TSAP to listen to

• Disconnect

• Send

• Receive

• ** Library procedures

October 11, 2018

Service Primitives

• Connum=LISTEN(local)

• Connum=Connect(local,remote)

• Status = Send(Connum, buffer,bytes)
• No Connection, illegal buffer address, negative count

• Status = Receive(Connum, buffer, bytes)

• Status = Disconnect(Connum)

October 11, 2018

The Transport Entity

• Use connection oriented, reliable network service

• Transport Entity is part of the user process

• Network Layer interface
• To_net and from_net

• Parameters –
• Connection Identifier

• Q bit – control message

• M bit – more data from this message to follow

• Packet Type

• Pointer to data

October 11, 2018

The Example Transport Entity

The network layer packets used in our example.

October 11, 2018

The Example Transport Entity (2)
Each connection is in one of seven states:

1.Idle – Connection not established yet.

2.Waiting – CONNECT has been executed, CALL REQUEST sent.

3.Queued – A CALL REQUEST has arrived; no LISTEN yet.

4.Established – The connection has been established.

5.Sending – The user is waiting for permission to send a
packet.

6.Receiving – A RECEIVE has been done.

7.DISCONNECTING – a DISCONNECT has been done locally.

October 11, 2018

State Transitions

• A primitive is executed

• A packet arrives

• A timer expires

October 11, 2018

Internet Protocols – UDP

October 11, 2018

• Introduction to UDP »

• Remote Procedure Call »

• Real-Time Transport »

User Datagram Protocol

• Connectionless

• Does not do
• Flow control

• Error control

• Retransmissions

• Useful in client-server situations

• Sends segments consisting of an 8-byte header followed by the
payload

October 11, 2018

Introduction to UDP (1)

October 11, 2018

UDP (User Datagram Protocol) is a shim over IP
• Header has ports (TSAPs), length and checksum.

Introduction to UDP (2)

October 11, 2018

Checksum covers UDP segment and IP pseudoheader
• Fields that change in the network are zeroed out

• Provides an end-to-end delivery check

RPC (Remote Procedure Call)
• RPC connects applications over the network with the familiar

abstraction of procedure calls
• Stubs package parameters/results into a message

• UDP with retransmissions is a low-latency transport

October 11, 2018

Limitations of RPC

• Pointers

• Weakly Typed languages – variable length arrays

• Not possible always to deduce parameter types

• Global variables

October 11, 2018

Real-Time Transport (1)

October 11, 2018

RTP (Real-time Transport Protocol) provides support for sending real-
time media over UDP
• Often implemented as part of the application

Real-Time Transport (2)

October 11, 2018

RTP header contains fields to describe the type of
media and synchronize it across multiple streams
• RTCP sister protocol helps with management tasks

RTP Header Fields

• Ver – 2

• P – Packet padded to multiple of 4 bytes

• X – extension header present

• CC – number of contributing sources

• M bit – Application specific marker

• Payload Type – encoding used

• Sequence Number

• Time stamp – produced by the source

• Synchronizations Source Identifier – which stream the packet belongs to

October 11, 2018

RTP Profiles

• RTP payloads may contain multiple samples coded in any way the
application wants

• Profiles – to support interworking
• Single Audio Stream

• Multiple encoding formats may be supported
• 8-bit pcm samples at 8KHz

• Delta encoding

• Predictive encoding

• MP3

• …

October 11, 2018

RTCP – Real-time Transport Control Protocol

• Control Protocol for RTP

• Does not transport any data

• Handles:
• Feedback

• Delay

• Jitter

• Bandwidth

• Congestion, etc.

• Synchronization
• Interstream Synchronization – Different clocks, drifts, etc.

• User Interface

October 11, 2018

Real-Time Transport (3)

October 11, 2018

Buffer at receiver is used to delay packets and absorb jitter so that
streaming media is played out smoothly

Packet 8’s network delay is too
large for buffer to help

Constant rate

Variable rate

Constant rate

Real-Time Transport (3)

October 11, 2018

High jitter, or more variation in delay, requires a larger
playout buffer to avoid playout misses
• Propagation delay does not affect buffer size

Buffer

Misses

