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Internet Protocols – TCP
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• The TCP service model »

• The TCP segment header »

• TCP connection establishment »

• TCP connection state modeling »

• TCP sliding window »

• TCP timer management »

• TCP congestion control »



TCP

• Reliable end-to-end byte stream over an unreliable internetwork

• Dynamically adapt to the properties of the network

• Robust

• RFC 793 – 1122 and 1323
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TCP Transport Entity
• Implemented as

• Library procedures

• User process, or

• Part of the kernel

• Accepts data streams from local processes

• Breaks them into segments of >64KB (usually 1460 bytes)

• Sends each piece in a separate IP packet

• On receive side – reconstruct the original byte stream and give 
to a process.

• Must recover from errors – time outs, retransmissions, etc.
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TCP Service Model

• End points called sockets
• Socket number 

• IP address of the host

• 16-bit number (called the port)

• Connection Oriented – Full Duplex, Point-to-Point
• Establish a connection between sockets

• An socket may be used for multiple connections at the same time

• Connection (socket1, socket2)

October 25, 2018



Berkeley Sockets

The socket primitives for TCP.
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The TCP Service Model (1)
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TCP provides applications with a reliable byte stream 
between processes; it is the workhorse of the Internet
• Popular servers run on well-known ports 



Internet Daemon

• Attaches to multiple well-known ports and waits

• When a connection comes in it forks off a new process and executes 
the appropriate daemon

• That daemon handles the request
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The TCP Service Model

(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application in a single 
READ CALL.
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TCP Service

• No message boundaries are preserved

• Send data as received or buffer it

• PUSH Flag
• Send data now

• Useful in sending command from terminal

• Urgent Data
• DEL or CTRL-C to break off a remote computation

• Use URGENT flag – Transmit everything right now
• Receiving application is interrupted

October 25, 2018



TCP Protocol

• Exchange segments
• 20 byte header (plus optional parts) 

• 0 or more data bytes

• Accumulate data from several writes into one segment

• May split data from one write into multiple segments

• Each segment, including the header, must be <65515 byte IP payload

• Each network has MTU- Maximum Transfer Unit
• Each segment must be less than or equal to MTU
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TCP Protocol

• TCP uses sliding window protocol

• Sequence numbers are for bytes not segments

• Sending – start a timer

• Receiving – send an ack with sequence number = next sequence 
number expected
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The TCP Segment Header

TCP Header.October 25, 2018



TCP Segment Header

• Source and Destination Port

• Sequence number

• Acknowledgement Number
• Next byte expected

• TCP Header Length – Number of 32 bit words in TCP header

• Flags
• URG – set to 1 if Urgent Pointer is in use

• Used to indicate a byte offset from the current seq no at which urgent data care there

• ACK – set to 1  when ack no is valid
• PSH – Push bit
• RST – Reset
• SYN – Used for connection establishment
• FIN – Used to close a connection
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The TCP Segment Header (2)

• The pseudoheader included in the TCP checksum

• Checksum the header, the data and the pseudoheader

• Add all 16-bit words in 1’s complement and then take 1’s 
complement of the sum

• To check calculate on the entire segment and result should be 0.
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TCP Window

• Window size tells how many bytes may be sent starting at the byte 
acknowledged
• If 0 means do not send now.

• May send a segment with same ack no and non-zero window size.
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Maximum segment Size

• All hosts are required to accept TCP segments of 536+20 =556 bytes

• May negotiate max segment size using options. 

• Another negotiable parameter – Window Scale
• May shift to the left by up to 14 bits

• Giving a max window size of 230 bytes
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Connection Establishment

• Uses three-way handshake

• Server passively listens
• LISTEN and ACCEPT primitives

• Client executes CONNECT
• Send a TCP Segment with SYN bit on and ACK bit off. 

• Check to see if there is a process listening
• If not send a RST

• If yes, then give the segment to the process

• If accepted – send an ACK message
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TCP Connection Establishment
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TCP sets up connections with the three-way handshake
• Release is symmetric, also as described before

Normal case Simultaneous connect



TCP Connection State Modeling (1)
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The TCP connection finite state machine has more 
states than our simple example from earlier.



TCP Connection State Modeling (2)
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Solid line is the normal path 
for a client. 

Dashed line is the normal 
path for a server. 

Light lines are unusual 
events. 

Transitions are labeled  by 
the cause and action, 
separated by a slash.



Connection Release

• Think of the connection as a pair of simplex connections
• Each is released independently

• Either party sends a segment with FIN bit set

• When FIN acked that direction is shut down
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TCP Sliding Window (1)
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TCP adds flow 
control to the 
sliding window    as 
before
• ACK + WIN is the 

sender’s limit



Sliding Window

October 25, 2018

When Window Size  =  0

• Sender stops sending, except
• Urgent Data

• Window Probe –
• One Byte Segment – forcing receiver to re-announce the next 

byte expected as Window size.



Example Situation Telnet

• 1 Byte 
• 21 Byte Segment

• 41 Byte Packet

• 40 Byte Ack

• 40 Byte Ack

• 41 Byte Echo
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162 Bytes on the network for one byte data

Delayed Ack - 500 ms



TCP Sliding Window (2)
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Need to add special cases to avoid unwanted 
behavior
• E.g., silly window syndrome [below]

Receiver application reads single bytes, so sender 
always sends one byte segments 



Handling Silly Window Problem

• Delay ack and window updates for 500 ms.

• Nagle’s Algorithm
• When data comes in one byte at a time

• Send the  first byte and buffer the rest till the outstanding byte is acknowledged

• Then send all the buffered characters in one TCP segment

• Mouse movements have to  be sent – Burst does not work well.

• Clark’s Solution
• Wait until decent amount of space available then advertise

• Max segment size or half buffer

• Sender not send tiny segments
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Timer Management

• TCP uses multiple timers
• Most important is the retransmission timer
• What value to set it at??

• Round Trip time
• Highly variable
• Varies over time
• Have to track it
• Estimate it
• M is a new measurement
•  = 7/8
• Use bRTT for retransmission timer
• Initial values of b were 2 – make is proportional to standard deviation of M 
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TCP Timer Management

October 25, 2018

TCP estimates retransmit timer from segment RTTs
• Tracks both average and variance (for Internet case)

• Timeout is set to average plus 4 x variance

LAN case – small, regular 
RTT

Internet case –
large, varied RTT



Timer Management

• Jacobson Approach

• Mean deviation estimate

• D = gD + ( 1-g) |RTT – M|

• Timeout = RTT + 4 D

• What to do on retransmissions
• Do not know if the ack is for the first or second

• Karn Algorithm
• Do not update RTT on any segments that have been retransmitted
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Persistence Timer

• Receiver sends a window of 0

• Later sends a window size but that packet is lost
• Both wait

• Persistence Timer
• When it goes off – sender sends a probe request to 

receiver to get a window size

• If still zero – continue to wait and reset persistence timer

• Keepalive Timer
• When a connection is idle for a long time – check if the 

other side is still there
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TCP Congestion Control

• Congestion – a function of total number of packets in the network, and 
where they are

• First step – detection
• Is packet loss an indication of congestion??
• All TCP algorithms assume timeouts are caused by congestion

• Initial steps
• When connection is established – use suitable window size

• Loss will not occur due to buffers at receiver

• Two issues
• Network Capacity
• Receiver Capacity
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TCP Congestion Control

• Network Capacity and Receiver Capacity

• Maintain two windows
• Receiver window
• Congestion window
• Use the min ( Receiver window and Congestion window)

• Initially
• Sender sets congestion window to MSS (Max Seg Size)
• If acked add one more MSS – 2 now
• Repeat for each acked MSS
• Congestion window grows exponentially
• If timeout – go back to previous window size
• SLOW START 
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Internet Congestion Control
• Use a Threshold – initially 64 KB

• When a timeout occurs set threshold to half the 
current congestion window and reset congestion 
window to 1 MSS

• Use slow start till the threshold is reached

• Then successful transmissions grow congestion 
window linearly
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TCP Congestion Control (1)
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TCP uses AIMD with loss signal to control congestion
• Implemented as a congestion window (cwnd) for the 

number of segments that may be in the network

• Uses several mechanisms that work together 

Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to 

reach roughly the right level

Additive 

Increase

Increase cwnd by 1 packet 

each RTT

Slowly increase send rate to 

probe at about the right level 

Fast

retransmit 

/ recovery

Resend lost packet after 3 

duplicate ACKs; send new 

packet for each new ACK

Recover from a lost packet 

without stopping ACK clock



TCP Congestion Control (2)
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Congestion window controls the sending rate
• Rate is cwnd / RTT; window can stop sender quickly 

• ACK clock (regular receipt of ACKs) paces traffic and 
smoothes out sender bursts

ACKs pace new segments into the 
network and smooth bursts



TCP Congestion Control (3)
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Slow start grows congestion window exponentially
• Doubles every RTT while keeping ACK clock going

Increment cwnd for 
each new ACK



TCP Congestion Control (4)
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ACK

Additive increase  grows 
cwnd slowly
• Adds 1 every RTT

• Keeps ACK clock



TCP Congestion Control (5)
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Slow start followed by additive increase (TCP Tahoe)
• Threshold is half of previous loss cwnd

Loss causes timeout; ACK 
clock has stopped so 
slow-start again



TCP Congestion Control (6)
• With fast recovery, we get the classic sawtooth (TCP 

Reno)
• Retransmit lost packet after 3 duplicate ACKs

• New packet for each dup. ACK until loss is repaired
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The ACK clock doesn’t stop, so 
no need to slow-start



TCP Congestion Control (7)
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SACK (Selective ACKs) extend ACKs with a vector to describe received 
segments and hence losses
• Allows for more accurate retransmissions / recovery 

No way for us to know that 2 and 5 
were lost with only ACKs



Wireless TCP  and UDP

Splitting a TCP connection into two connections.
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Transactional TCP

(a) RPC using normal TPC.
(b) RPC using T/TCP.
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Performance Issues
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Many strategies for getting good performance 
have been learned over time

• Performance problems »

• Measuring network performance »

• Host design for fast networks »

• Fast segment processing »

• Header compression »

• Protocols for “long fat” networks »



Performance Problems
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Unexpected loads often interact with protocols to cause performance 
problems
• Need to find the situations and improve the protocols

Examples:
• Broadcast storm: one broadcast triggers another

• Synchronization: a building of computers all contact the DHCP server 
together after a power failure

• Tiny packets: some situations can cause TCP to send many small packets 
instead of few large ones



Host Design for Fast Networks
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Poor host software can greatly slow down networks. 

Rules of thumb for fast host software:
• Host speed more important than network speed

• Reduce packet count to reduce overhead

• Minimize data touching

• Minimize context switches

• Avoiding congestion is better than recovering from it

• Avoid timeouts



Fast Segment Processing (1)
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Speed up the common case with a fast path [pink]
• Handles packets with expected header; OK for others to 

run slowly

Segment

segment



Fast Segment Processing (2)
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Header fields are often the same from one packet to the next 
for a flow; copy/check them to speed up processing

IP header fields that are often the 
same for a one-way flow (shaded)

TCP header fields that stay the same 
for a one-way flow (shaded)



Fast TPDU Processing (3)

A timing wheel.
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Header Compression
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Overhead can be very large for small packets
• 40 bytes of header for RTP/UDP/IP VoIP packet

• Problematic for slow links, especially wireless

Header compression mitigates this problem
• Runs between Link and Network layer

• Omits fields that don’t change or change predictably
• 40 byte TCP/IP header  3 bytes of information

• Gives simple high-layer headers and efficient links



Protocols for “Long Fat” Networks (1)
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Networks with high bandwidth (“Fat”) and high 
delay (“Long”) can store much information inside 
the network
• Requires protocols with ample buffering and few RTTs, 

rather than reducing the bits on the wire 

Starting to send 1 Mbit
San Diego  Boston

20ms after start 40ms after start



Protocols for “Long Fat” Networks (2)
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You can buy more bandwidth but not lower delay
• Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay



Delay Tolerant Networking

October 25, 2018

DTNs (Delay Tolerant Networks) store messages inside the 
network until they can be delivered

• DTN Architecture »

• Bundle Protocol »



DTN Architecture (1)
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Messages called bundles are stored at DTN nodes 
while waiting for an intermittent link to become a 
contact
• Bundles might wait hours, not milliseconds in routers

• May be no working end-to-end path at any time



DTN Architecture (2)
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Example DTN connecting a satellite to a collection 
point



Bundle Protocol (1)
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The Bundle protocol uses TCP or other transports 
and provides a DTN service to applications



Bundle Protocol (2)
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Features of the bundle message format:
• Dest./source add high-level addresses (not port/IP)

• Custody transfer shifts delivery responsibility

• Dictionary provides compression for efficiency


