
CMSC 417

Computer Networks

Prof. Ashok K Agrawala

© 2018 Ashok Agrawala

October 25, 2018

Message, Segment, Packet, and Frame

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Ethernet frame Ethernet frameSONET frameOctober 25, 2018

Internet Protocols – TCP

October 25, 2018

• The TCP service model »

• The TCP segment header »

• TCP connection establishment »

• TCP connection state modeling »

• TCP sliding window »

• TCP timer management »

• TCP congestion control »

TCP

• Reliable end-to-end byte stream over an unreliable internetwork

• Dynamically adapt to the properties of the network

• Robust

• RFC 793 – 1122 and 1323

October 25, 2018

TCP Transport Entity
• Implemented as

• Library procedures

• User process, or

• Part of the kernel

• Accepts data streams from local processes

• Breaks them into segments of >64KB (usually 1460 bytes)

• Sends each piece in a separate IP packet

• On receive side – reconstruct the original byte stream and give
to a process.

• Must recover from errors – time outs, retransmissions, etc.

October 25, 2018

TCP Service Model

• End points called sockets
• Socket number

• IP address of the host

• 16-bit number (called the port)

• Connection Oriented – Full Duplex, Point-to-Point
• Establish a connection between sockets

• An socket may be used for multiple connections at the same time

• Connection (socket1, socket2)

October 25, 2018

Berkeley Sockets

The socket primitives for TCP.

October 25, 2018

The TCP Service Model (1)

October 25, 2018

TCP provides applications with a reliable byte stream
between processes; it is the workhorse of the Internet
• Popular servers run on well-known ports

Internet Daemon

• Attaches to multiple well-known ports and waits

• When a connection comes in it forks off a new process and executes
the appropriate daemon

• That daemon handles the request

October 25, 2018

The TCP Service Model

(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application in a single
READ CALL.

October 25, 2018

TCP Service

• No message boundaries are preserved

• Send data as received or buffer it

• PUSH Flag
• Send data now

• Useful in sending command from terminal

• Urgent Data
• DEL or CTRL-C to break off a remote computation

• Use URGENT flag – Transmit everything right now
• Receiving application is interrupted

October 25, 2018

TCP Protocol

• Exchange segments
• 20 byte header (plus optional parts)

• 0 or more data bytes

• Accumulate data from several writes into one segment

• May split data from one write into multiple segments

• Each segment, including the header, must be <65515 byte IP payload

• Each network has MTU- Maximum Transfer Unit
• Each segment must be less than or equal to MTU

October 25, 2018

TCP Protocol

• TCP uses sliding window protocol

• Sequence numbers are for bytes not segments

• Sending – start a timer

• Receiving – send an ack with sequence number = next sequence
number expected

October 25, 2018

The TCP Segment Header

TCP Header.October 25, 2018

TCP Segment Header

• Source and Destination Port

• Sequence number

• Acknowledgement Number
• Next byte expected

• TCP Header Length – Number of 32 bit words in TCP header

• Flags
• URG – set to 1 if Urgent Pointer is in use

• Used to indicate a byte offset from the current seq no at which urgent data care there

• ACK – set to 1 when ack no is valid
• PSH – Push bit
• RST – Reset
• SYN – Used for connection establishment
• FIN – Used to close a connection

October 25, 2018

The TCP Segment Header (2)

• The pseudoheader included in the TCP checksum

• Checksum the header, the data and the pseudoheader

• Add all 16-bit words in 1’s complement and then take 1’s
complement of the sum

• To check calculate on the entire segment and result should be 0.

October 25, 2018

TCP Window

• Window size tells how many bytes may be sent starting at the byte
acknowledged
• If 0 means do not send now.

• May send a segment with same ack no and non-zero window size.

October 25, 2018

Maximum segment Size

• All hosts are required to accept TCP segments of 536+20 =556 bytes

• May negotiate max segment size using options.

• Another negotiable parameter – Window Scale
• May shift to the left by up to 14 bits

• Giving a max window size of 230 bytes

October 25, 2018

Connection Establishment

• Uses three-way handshake

• Server passively listens
• LISTEN and ACCEPT primitives

• Client executes CONNECT
• Send a TCP Segment with SYN bit on and ACK bit off.

• Check to see if there is a process listening
• If not send a RST

• If yes, then give the segment to the process

• If accepted – send an ACK message

October 25, 2018

TCP Connection Establishment

October 25, 2018

TCP sets up connections with the three-way handshake
• Release is symmetric, also as described before

Normal case Simultaneous connect

TCP Connection State Modeling (1)

October 25, 2018

The TCP connection finite state machine has more
states than our simple example from earlier.

TCP Connection State Modeling (2)

October 25, 2018

Solid line is the normal path
for a client.

Dashed line is the normal
path for a server.

Light lines are unusual
events.

Transitions are labeled by
the cause and action,
separated by a slash.

Connection Release

• Think of the connection as a pair of simplex connections
• Each is released independently

• Either party sends a segment with FIN bit set

• When FIN acked that direction is shut down

October 25, 2018

TCP Sliding Window (1)

October 25, 2018

TCP adds flow
control to the
sliding window as
before
• ACK + WIN is the

sender’s limit

Sliding Window

October 25, 2018

When Window Size = 0

• Sender stops sending, except
• Urgent Data

• Window Probe –
• One Byte Segment – forcing receiver to re-announce the next

byte expected as Window size.

Example Situation Telnet

• 1 Byte
• 21 Byte Segment

• 41 Byte Packet

• 40 Byte Ack

• 40 Byte Ack

• 41 Byte Echo

October 25, 2018

162 Bytes on the network for one byte data

Delayed Ack - 500 ms

TCP Sliding Window (2)

October 25, 2018

Need to add special cases to avoid unwanted
behavior
• E.g., silly window syndrome [below]

Receiver application reads single bytes, so sender
always sends one byte segments

Handling Silly Window Problem

• Delay ack and window updates for 500 ms.

• Nagle’s Algorithm
• When data comes in one byte at a time

• Send the first byte and buffer the rest till the outstanding byte is acknowledged

• Then send all the buffered characters in one TCP segment

• Mouse movements have to be sent – Burst does not work well.

• Clark’s Solution
• Wait until decent amount of space available then advertise

• Max segment size or half buffer

• Sender not send tiny segments

October 25, 2018

Timer Management

• TCP uses multiple timers
• Most important is the retransmission timer
• What value to set it at??

• Round Trip time
• Highly variable
• Varies over time
• Have to track it
• Estimate it
• M is a new measurement
•  = 7/8
• Use bRTT for retransmission timer
• Initial values of b were 2 – make is proportional to standard deviation of M

October 25, 2018

(1)RTT RTT M   

TCP Timer Management

October 25, 2018

TCP estimates retransmit timer from segment RTTs
• Tracks both average and variance (for Internet case)

• Timeout is set to average plus 4 x variance

LAN case – small, regular
RTT

Internet case –
large, varied RTT

Timer Management

• Jacobson Approach

• Mean deviation estimate

• D = gD + (1-g) |RTT – M|

• Timeout = RTT + 4 D

• What to do on retransmissions
• Do not know if the ack is for the first or second

• Karn Algorithm
• Do not update RTT on any segments that have been retransmitted

October 25, 2018

Persistence Timer

• Receiver sends a window of 0

• Later sends a window size but that packet is lost
• Both wait

• Persistence Timer
• When it goes off – sender sends a probe request to

receiver to get a window size

• If still zero – continue to wait and reset persistence timer

• Keepalive Timer
• When a connection is idle for a long time – check if the

other side is still there

October 25, 2018

TCP Congestion Control

• Congestion – a function of total number of packets in the network, and
where they are

• First step – detection
• Is packet loss an indication of congestion??
• All TCP algorithms assume timeouts are caused by congestion

• Initial steps
• When connection is established – use suitable window size

• Loss will not occur due to buffers at receiver

• Two issues
• Network Capacity
• Receiver Capacity

October 25, 2018

TCP Congestion Control

• Network Capacity and Receiver Capacity

• Maintain two windows
• Receiver window
• Congestion window
• Use the min (Receiver window and Congestion window)

• Initially
• Sender sets congestion window to MSS (Max Seg Size)
• If acked add one more MSS – 2 now
• Repeat for each acked MSS
• Congestion window grows exponentially
• If timeout – go back to previous window size
• SLOW START

October 25, 2018

Internet Congestion Control
• Use a Threshold – initially 64 KB

• When a timeout occurs set threshold to half the
current congestion window and reset congestion
window to 1 MSS

• Use slow start till the threshold is reached

• Then successful transmissions grow congestion
window linearly

October 25, 2018

TCP Congestion Control (1)

October 25, 2018

TCP uses AIMD with loss signal to control congestion
• Implemented as a congestion window (cwnd) for the

number of segments that may be in the network

• Uses several mechanisms that work together

Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to

reach roughly the right level

Additive

Increase

Increase cwnd by 1 packet

each RTT

Slowly increase send rate to

probe at about the right level

Fast

retransmit

/ recovery

Resend lost packet after 3

duplicate ACKs; send new

packet for each new ACK

Recover from a lost packet

without stopping ACK clock

TCP Congestion Control (2)

October 25, 2018

Congestion window controls the sending rate
• Rate is cwnd / RTT; window can stop sender quickly

• ACK clock (regular receipt of ACKs) paces traffic and
smoothes out sender bursts

ACKs pace new segments into the
network and smooth bursts

TCP Congestion Control (3)

October 25, 2018

Slow start grows congestion window exponentially
• Doubles every RTT while keeping ACK clock going

Increment cwnd for
each new ACK

TCP Congestion Control (4)

October 25, 2018

ACK

Additive increase grows
cwnd slowly
• Adds 1 every RTT

• Keeps ACK clock

TCP Congestion Control (5)

October 25, 2018

Slow start followed by additive increase (TCP Tahoe)
• Threshold is half of previous loss cwnd

Loss causes timeout; ACK
clock has stopped so
slow-start again

TCP Congestion Control (6)
• With fast recovery, we get the classic sawtooth (TCP

Reno)
• Retransmit lost packet after 3 duplicate ACKs

• New packet for each dup. ACK until loss is repaired

October 25, 2018

The ACK clock doesn’t stop, so
no need to slow-start

TCP Congestion Control (7)

October 25, 2018

SACK (Selective ACKs) extend ACKs with a vector to describe received
segments and hence losses
• Allows for more accurate retransmissions / recovery

No way for us to know that 2 and 5
were lost with only ACKs

Wireless TCP and UDP

Splitting a TCP connection into two connections.

October 25, 2018

Transactional TCP

(a) RPC using normal TPC.
(b) RPC using T/TCP.

October 25, 2018

Performance Issues

October 25, 2018

Many strategies for getting good performance
have been learned over time

• Performance problems »

• Measuring network performance »

• Host design for fast networks »

• Fast segment processing »

• Header compression »

• Protocols for “long fat” networks »

Performance Problems

October 25, 2018

Unexpected loads often interact with protocols to cause performance
problems
• Need to find the situations and improve the protocols

Examples:
• Broadcast storm: one broadcast triggers another

• Synchronization: a building of computers all contact the DHCP server
together after a power failure

• Tiny packets: some situations can cause TCP to send many small packets
instead of few large ones

Host Design for Fast Networks

October 25, 2018

Poor host software can greatly slow down networks.

Rules of thumb for fast host software:
• Host speed more important than network speed

• Reduce packet count to reduce overhead

• Minimize data touching

• Minimize context switches

• Avoiding congestion is better than recovering from it

• Avoid timeouts

Fast Segment Processing (1)

October 25, 2018

Speed up the common case with a fast path [pink]
• Handles packets with expected header; OK for others to

run slowly

Segment

segment

Fast Segment Processing (2)

October 25, 2018

Header fields are often the same from one packet to the next
for a flow; copy/check them to speed up processing

IP header fields that are often the
same for a one-way flow (shaded)

TCP header fields that stay the same
for a one-way flow (shaded)

Fast TPDU Processing (3)

A timing wheel.
October 25, 2018

Header Compression

October 25, 2018

Overhead can be very large for small packets
• 40 bytes of header for RTP/UDP/IP VoIP packet

• Problematic for slow links, especially wireless

Header compression mitigates this problem
• Runs between Link and Network layer

• Omits fields that don’t change or change predictably
• 40 byte TCP/IP header  3 bytes of information

• Gives simple high-layer headers and efficient links

Protocols for “Long Fat” Networks (1)

October 25, 2018

Networks with high bandwidth (“Fat”) and high
delay (“Long”) can store much information inside
the network
• Requires protocols with ample buffering and few RTTs,

rather than reducing the bits on the wire

Starting to send 1 Mbit
San Diego  Boston

20ms after start 40ms after start

Protocols for “Long Fat” Networks (2)

October 25, 2018

You can buy more bandwidth but not lower delay
• Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay

Delay Tolerant Networking

October 25, 2018

DTNs (Delay Tolerant Networks) store messages inside the
network until they can be delivered

• DTN Architecture »

• Bundle Protocol »

DTN Architecture (1)

October 25, 2018

Messages called bundles are stored at DTN nodes
while waiting for an intermittent link to become a
contact
• Bundles might wait hours, not milliseconds in routers

• May be no working end-to-end path at any time

DTN Architecture (2)

October 25, 2018

Example DTN connecting a satellite to a collection
point

Bundle Protocol (1)

October 25, 2018

The Bundle protocol uses TCP or other transports
and provides a DTN service to applications

Bundle Protocol (2)

October 25, 2018

Features of the bundle message format:
• Dest./source add high-level addresses (not port/IP)

• Custody transfer shifts delivery responsibility

• Dictionary provides compression for efficiency

