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TCP Congestion Control

• Congestion – a function of total number of packets in the network, and 
where they are

• First step – detection
• Is packet loss an indication of congestion??
• All TCP algorithms assume timeouts are caused by congestion

• Initial steps
• When connection is established – use suitable window size

• Loss will not occur due to buffers at receiver

• Two issues
• Network Capacity
• Receiver Capacity
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TCP Congestion Control

• Network Capacity and Receiver Capacity

• Maintain two windows
• Receiver window
• Congestion window
• Use the min ( Receiver window and Congestion window)

• Initially
• Sender sets congestion window to MSS (Max Seg Size)
• If acked add one more MSS – 2 now
• Repeat for each acked MSS
• Congestion window grows exponentially
• If timeout – go back to previous window size
• SLOW START 
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Internet Congestion Control
• Use a Threshold – initially 64 KB

• When a timeout occurs set threshold to half the 
current congestion window and reset congestion 
window to 1 MSS

• Use slow start till the threshold is reached

• Then successful transmissions grow congestion 
window linearly
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TCP Congestion Control (1)

October 30 , 2018

TCP uses AIMD with loss signal to control congestion
• Implemented as a congestion window (cwnd) for the 

number of segments that may be in the network

• Uses several mechanisms that work together 

Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to 

reach roughly the right level

Additive 

Increase

Increase cwnd by 1 packet 

each RTT

Slowly increase send rate to 

probe at about the right level 

Fast

retransmit 

/ recovery

Resend lost packet after 3 

duplicate ACKs; send new 

packet for each new ACK

Recover from a lost packet 

without stopping ACK clock



TCP Congestion Control (2)
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Congestion window controls the sending rate
• Rate is cwnd / RTT; window can stop sender quickly 

• ACK clock (regular receipt of ACKs) paces traffic and 
smoothes out sender bursts

ACKs pace new segments into the 
network and smooth bursts



TCP Congestion Control (3)
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Slow start grows congestion window exponentially
• Doubles every RTT while keeping ACK clock going

Increment cwnd for 
each new ACK



TCP Congestion Control (4)

October 30 , 2018

ACK

Additive increase  grows 
cwnd slowly
• Adds 1 every RTT

• Keeps ACK clock



TCP Congestion Control (5)
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Slow start followed by additive increase (TCP Tahoe)
• Threshold is half of previous loss cwnd

Loss causes timeout; ACK 
clock has stopped so 
slow-start again



TCP Congestion Control (6)
• With fast recovery, we get the classic sawtooth (TCP 

Reno)
• Retransmit lost packet after 3 duplicate ACKs

• New packet for each dup. ACK until loss is repaired
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The ACK clock doesn’t stop, so 
no need to slow-start



TCP Congestion Control (7)
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SACK (Selective ACKs) extend ACKs with a vector to describe received 
segments and hence losses
• Allows for more accurate retransmissions / recovery 

No way for us to know that 2 and 5 
were lost with only ACKs



Wireless TCP  and UDP

Splitting a TCP connection into two connections.
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Transactional TCP

(a) RPC using normal TPC.
(b) RPC using T/TCP.
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Performance Issues
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Many strategies for getting good performance 
have been learned over time

• Performance problems »

• Measuring network performance »

• Host design for fast networks »

• Fast segment processing »

• Header compression »

• Protocols for “long fat” networks »



Performance Problems
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Unexpected loads often interact with protocols to cause performance 
problems
• Need to find the situations and improve the protocols

Examples:
• Broadcast storm: one broadcast triggers another

• Synchronization: a building of computers all contact the DHCP server 
together after a power failure

• Tiny packets: some situations can cause TCP to send many small packets 
instead of few large ones



Host Design for Fast Networks
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Poor host software can greatly slow down networks. 

Rules of thumb for fast host software:
• Host speed more important than network speed

• Reduce packet count to reduce overhead

• Minimize data touching

• Minimize context switches

• Avoiding congestion is better than recovering from it

• Avoid timeouts



Fast Segment Processing (1)
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Speed up the common case with a fast path [pink]
• Handles packets with expected header; OK for others to 

run slowly

Segment

segment



Fast Segment Processing (2)
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Header fields are often the same from one packet to the next 
for a flow; copy/check them to speed up processing

IP header fields that are often the 
same for a one-way flow (shaded)

TCP header fields that stay the same 
for a one-way flow (shaded)



Fast TPDU Processing (3)

A timing wheel.
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Header Compression
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Overhead can be very large for small packets
• 40 bytes of header for RTP/UDP/IP VoIP packet

• Problematic for slow links, especially wireless

Header compression mitigates this problem
• Runs between Link and Network layer

• Omits fields that don’t change or change predictably
• 40 byte TCP/IP header  3 bytes of information

• Gives simple high-layer headers and efficient links



Protocols for “Long Fat” Networks (1)
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Networks with high bandwidth (“Fat”) and high 
delay (“Long”) can store much information inside 
the network
• Requires protocols with ample buffering and few RTTs, 

rather than reducing the bits on the wire 

Starting to send 1 Mbit
San Diego  Boston

20ms after start 40ms after start



Protocols for “Long Fat” Networks (2)
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You can buy more bandwidth but not lower delay
• Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay



Delay Tolerant Networking
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DTNs (Delay Tolerant Networks) store messages inside the 
network until they can be delivered

• DTN Architecture »

• Bundle Protocol »



DTN Architecture (1)
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Messages called bundles are stored at DTN nodes 
while waiting for an intermittent link to become a 
contact
• Bundles might wait hours, not milliseconds in routers

• May be no working end-to-end path at any time



DTN Architecture (2)
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Example DTN connecting a satellite to a collection 
point



Bundle Protocol (1)
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The Bundle protocol uses TCP or other transports 
and provides a DTN service to applications



Bundle Protocol (2)
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Features of the bundle message format:
• Dest./source add high-level addresses (not port/IP)

• Custody transfer shifts delivery responsibility

• Dictionary provides compression for efficiency


