
CMSC 417

Computer Networks

Prof. Ashok K Agrawala

© 2018 Ashok Agrawala

October 30
, 2018

Message, Segment, Packet, and Frame

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Ethernet frame Ethernet frameSONET frameOctober 30 , 2018

TCP Congestion Control

• Congestion – a function of total number of packets in the network, and
where they are

• First step – detection
• Is packet loss an indication of congestion??
• All TCP algorithms assume timeouts are caused by congestion

• Initial steps
• When connection is established – use suitable window size

• Loss will not occur due to buffers at receiver

• Two issues
• Network Capacity
• Receiver Capacity

October 30 , 2018

TCP Congestion Control

• Network Capacity and Receiver Capacity

• Maintain two windows
• Receiver window
• Congestion window
• Use the min (Receiver window and Congestion window)

• Initially
• Sender sets congestion window to MSS (Max Seg Size)
• If acked add one more MSS – 2 now
• Repeat for each acked MSS
• Congestion window grows exponentially
• If timeout – go back to previous window size
• SLOW START

October 30 , 2018

Internet Congestion Control
• Use a Threshold – initially 64 KB

• When a timeout occurs set threshold to half the
current congestion window and reset congestion
window to 1 MSS

• Use slow start till the threshold is reached

• Then successful transmissions grow congestion
window linearly

October 30 , 2018

TCP Congestion Control (1)

October 30 , 2018

TCP uses AIMD with loss signal to control congestion
• Implemented as a congestion window (cwnd) for the

number of segments that may be in the network

• Uses several mechanisms that work together

Name Mechanism Purpose

ACK clock Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increase send rate to

reach roughly the right level

Additive

Increase

Increase cwnd by 1 packet

each RTT

Slowly increase send rate to

probe at about the right level

Fast

retransmit

/ recovery

Resend lost packet after 3

duplicate ACKs; send new

packet for each new ACK

Recover from a lost packet

without stopping ACK clock

TCP Congestion Control (2)

October 30 , 2018

Congestion window controls the sending rate
• Rate is cwnd / RTT; window can stop sender quickly

• ACK clock (regular receipt of ACKs) paces traffic and
smoothes out sender bursts

ACKs pace new segments into the
network and smooth bursts

TCP Congestion Control (3)

October 30 , 2018

Slow start grows congestion window exponentially
• Doubles every RTT while keeping ACK clock going

Increment cwnd for
each new ACK

TCP Congestion Control (4)

October 30 , 2018

ACK

Additive increase grows
cwnd slowly
• Adds 1 every RTT

• Keeps ACK clock

TCP Congestion Control (5)

October 30 , 2018

Slow start followed by additive increase (TCP Tahoe)
• Threshold is half of previous loss cwnd

Loss causes timeout; ACK
clock has stopped so
slow-start again

TCP Congestion Control (6)
• With fast recovery, we get the classic sawtooth (TCP

Reno)
• Retransmit lost packet after 3 duplicate ACKs

• New packet for each dup. ACK until loss is repaired

October 30 , 2018

The ACK clock doesn’t stop, so
no need to slow-start

TCP Congestion Control (7)

October 30 , 2018

SACK (Selective ACKs) extend ACKs with a vector to describe received
segments and hence losses
• Allows for more accurate retransmissions / recovery

No way for us to know that 2 and 5
were lost with only ACKs

Wireless TCP and UDP

Splitting a TCP connection into two connections.

October 30 , 2018

Transactional TCP

(a) RPC using normal TPC.
(b) RPC using T/TCP.

October 30 , 2018

Performance Issues

October 30 , 2018

Many strategies for getting good performance
have been learned over time

• Performance problems »

• Measuring network performance »

• Host design for fast networks »

• Fast segment processing »

• Header compression »

• Protocols for “long fat” networks »

Performance Problems

October 30 , 2018

Unexpected loads often interact with protocols to cause performance
problems
• Need to find the situations and improve the protocols

Examples:
• Broadcast storm: one broadcast triggers another

• Synchronization: a building of computers all contact the DHCP server
together after a power failure

• Tiny packets: some situations can cause TCP to send many small packets
instead of few large ones

Host Design for Fast Networks

October 30 , 2018

Poor host software can greatly slow down networks.

Rules of thumb for fast host software:
• Host speed more important than network speed

• Reduce packet count to reduce overhead

• Minimize data touching

• Minimize context switches

• Avoiding congestion is better than recovering from it

• Avoid timeouts

Fast Segment Processing (1)

October 30 , 2018

Speed up the common case with a fast path [pink]
• Handles packets with expected header; OK for others to

run slowly

Segment

segment

Fast Segment Processing (2)

October 30 , 2018

Header fields are often the same from one packet to the next
for a flow; copy/check them to speed up processing

IP header fields that are often the
same for a one-way flow (shaded)

TCP header fields that stay the same
for a one-way flow (shaded)

Fast TPDU Processing (3)

A timing wheel.
October 30 , 2018

Header Compression

October 30 , 2018

Overhead can be very large for small packets
• 40 bytes of header for RTP/UDP/IP VoIP packet

• Problematic for slow links, especially wireless

Header compression mitigates this problem
• Runs between Link and Network layer

• Omits fields that don’t change or change predictably
• 40 byte TCP/IP header  3 bytes of information

• Gives simple high-layer headers and efficient links

Protocols for “Long Fat” Networks (1)

October 30 , 2018

Networks with high bandwidth (“Fat”) and high
delay (“Long”) can store much information inside
the network
• Requires protocols with ample buffering and few RTTs,

rather than reducing the bits on the wire

Starting to send 1 Mbit
San Diego  Boston

20ms after start 40ms after start

Protocols for “Long Fat” Networks (2)

October 30 , 2018

You can buy more bandwidth but not lower delay
• Need to shift ends (e.g., into cloud) to lower further

Minimum time to send and ACK a 1-Mbit file over a 4000-km line

Propagation delay

Delay Tolerant Networking

October 30 , 2018

DTNs (Delay Tolerant Networks) store messages inside the
network until they can be delivered

• DTN Architecture »

• Bundle Protocol »

DTN Architecture (1)

October 30 , 2018

Messages called bundles are stored at DTN nodes
while waiting for an intermittent link to become a
contact
• Bundles might wait hours, not milliseconds in routers

• May be no working end-to-end path at any time

DTN Architecture (2)

October 30 , 2018

Example DTN connecting a satellite to a collection
point

Bundle Protocol (1)

October 30 , 2018

The Bundle protocol uses TCP or other transports
and provides a DTN service to applications

Bundle Protocol (2)

October 30 , 2018

Features of the bundle message format:
• Dest./source add high-level addresses (not port/IP)

• Custody transfer shifts delivery responsibility

• Dictionary provides compression for efficiency

