CSMC 417

Computer Networks Prof. Ashok K Agrawala

© 2018 Ashok Agrawala

The Medium Access Control Sublayer

Wireless Networking Technologies

Computer Network Types by Spatial Scope

4

Technologies

- IEEE 802.11 -- WiFi
- Bluetooth
- Zigbee
- Z Wave
- UWB
- RFID
- NFC
- Cellular
 - GSM
 - LTE
 - WiMAX

Characteristics

- Frequency
 - ISM
 - 900 MHz
 - 2.4 GHz
 - 5 Ghz
 - Others
- Data Rates

Range

• Infrastructure

WiFi MAC

- Retry Counters
 - Short retry counter
 - Long retry counter
 - Lifetime timer
- Basic Access Mechanism
 - CSMA/CA
 - Binary exponential back-off
 - NAV Network Allocation Vector
- Timing Intervals: SIFS, Slot Time, PIFS, DIFS, EIFS
- DCF Operation
- PCF Operation

Contention and Contention-Free Access

- The original 802.11 standard defined two general approaches for channel access
 - Point Coordinated Function (PCF) for contention-free service
 - an AP controls stations in the Basic Service Set (BSS) to insure that transmissions do not interfere with one another
 - For example, an AP can assign each station a separate frequency
 - In practice, PCF is never used
 - Distributed Coordinated Function (DCF) for contention-based service
 - arranges for each station in a BSS to run a random access protocol

• Wireless networks can experience a hidden station problem

- where two stations can communicate but a third station can only receive the signal from one of them
- 802.11 networks use CSMA/CA
 - which requires a pair to exchange Ready To Send (RTS) and Clear To Send (CTS) messages before transmitting a packet

WiFi

- Protocol
 - CSMA-CA

DCF Operation

PCF Operation

- Poll eliminates contention
- PC Point Coordinator
 - Polling List
 - Over DCF
 - PIFS (less than DIFS $\sim 30 \ \mu s$)
- CFP Contention Free Period
 - Alternate with DCF
- Periodic Beacon contains length of CFP
- CF-Poll Contention Free Poll
- NAV prevents during CFP
- CF-End resets NAV

802.11 MAC (2)

Virtual channel sensing with the NAV and optional RTS/CTS (often not used) avoids hidden terminals

Time ------

The 802.11 MAC Sublayer Protocol (3)

A fragment burst.

Time —

Other MAC Operations

Fragmentation

- Sequence control field
- In burst
- Medium is reserved
- NAV is updated by ACK

Privacy

- WEP bit set when encrypted.
- Only the frame body.
- Medium is reserved
- NAV is updated by ACK
- Symmetric variable key

WEP Details

- Two mechanism
 - Default keys
 - Key mapping
- WEP header and trailer
 - KEYID in header
 - ICV in trailer
- dot11UndecryptableCount
 - Indicates an attack.
- dot11ICVErrorCount
 - Attack to determine a key is in progress.

MAC Management

- Interference by users that have no concept of data communication. Ex: Microwave
- Interference by other WLANs
- Security of data
- Mobility
- Power Management

Authentication

- Authentication
 - Prove identity to another station.
 - Open system authentication
 - Shared key authentication
 - A sends
 - B responds with a text
 - A encrypt and send back
 - B decrypts and returns an authentication management frame.
 - May authenticate any number of station.

- Security Problem
 - A rogue AP
 - SSID of ESS
 - Announce its presence with beaconing
 - A active rogue reach higher layer data if unencrypted.

Association

Association

- Transparent mobility
- After authentication
- Association request to an AP
- After established, forward data
- To BSS, if DA is in the BSS.
- To DS, if DA is outside the BSS.
- To AP, if DA is in another BSS.
- To "**portal**", if DC is outside the ESS.
- Portal : transfer point : track mobility. (AP, bridge, or router) transfer 802.1h
- New AP after reassociation, communicates with the old AP.

Address Filtering

- More than one WLAN
- Three Addresses
- Receiver examine the DA, BSSID

Privacy MAC Function

• WEP Mechanism

Power Management

Independent BSS

- Distributed
- Data frame handshake
- Wake up every beacon.
- Awake a period of ATIM after each beacon.
- Send ACK if receive ATIM frame & awake until the end of next ATIM.
- Estimate the power saving station, and delay until the next ATIM.
- Multicast frame : No ACK : optional

Overhead

- Sender
 - Announcement frame
 - Buffer
 - Power consumption in ATIM
- Receiver
 - Awake for every Beacon and ATIM

Power Management

- Infrastructure BSS
 - Centralized in the AP.
 - Greater power saving
 - Mobile Station sleeps for a number of beacon periods.
 - Awake for multicast indicated in DTIM in Beacon.
 - AP buffer, indicate in TIM
 - Mobile requests by PS-Poll

Synchronization

- Timer Synchronization in an Infrastructure BSS
 - Beacon contains TSF
 - Station updates its with the TSF in beacon.
- Timer Synchronization in an IBSS
 - Distributed. Starter of the BSS send TSF zero and increments.
 - Each Station sends a Beacon
 - Station updates if the TSF is bigger.
 - Small number of stations: the fastest timer value
 - Large number of stations: slower timer value due to collision.
- Synchronization with Frequency Hopping PHY Layers
 - Changes in a frequency hopping PHY layer occurs periodically (the dwell period).
 - Change to new channel when the TSF timer value, modulo the dwell period, is zero

Scanning & Joining

- Scanning
 - Passive Scanning : only listens for Beacon and get info of the BSS. Power is saved.
 - Active Scanning: transmit and elicit response from APs. If IBSS, last station that transmitted beacon responds. Time is saved.
- Joining a BSS
 - Syncronization in TSF and frequency : Adopt PHY parameters : The BSSID : WEP : Beacon Period : DTIM

Combining Management Tools

- Combine Power Saving Periods with Scanning
 - Instead of entering power saving mode, perform active scanning.
 - Gather information about its environments.

- Preauthentication
 - Scans and initiate an authentication
 - Reduces the time

Coordination Among Access Points

- To what extent do APs need to coordinate?
- Many early AP designs were complex
- The access points coordinated to provide seamless mobility similar to the cellular phone system
 - That is, the APs communicated amongst themselves to insure smooth handoff as a wireless computer moved from the region to another
 - Some designs measured signal strength and attempted to move a wireless node to a new AP
 - when the signal received at the new AP exceeded the signal strength at the existing AP

Coordination Among Access Points

- Some vendors began to offer lower cost, less complex APs that do not coordinate
- The vendors argue that signal strength does not provide a valid measure of mobility
 - a mobile computer can handle changing from one AP to another
 - and that the wired infrastructure connecting APs has sufficient capacity to allow more centralized coordination
- A less complex AP design is appropriate in situations where an installation consists of a single AP

Hidden Terminal

A wireless LAN. (a) A and C are hidden terminals when transmitting to B.

Nov 6, 2018

Exposed Terminal

A wireless LAN. (b) B and C are exposed terminals when transmitting to A and D.

November 18

Nov 6, 2018

RTS/CTS

(a)

(b)

The MACA protocol. (a) *A sending an RTS to B. (b) B responding* with a CTS to *A.* November 18

Contention and Contention-Free Access

Illustration of CSMA/CA with SIFS and DIFS timing.

Contention and Contention-Free Access

- Physical separation among stations and electrical noise makes it difficult to distinguish between
 - weak signals, interference, and collisions
- Wi-Fi networks do not employ collision detection
 - That is, the hardware does not attempt to sense interference during a transmission
 - Instead, a sender waits for an acknowledgement (ACK) message
 - If no ACK arrives, the sender assumes the transmission was lost
 - and employs a **backoff** strategy similar to the strategy in wired Ethernet
- In practice, 802.11 networks that have few users and do not experience electrical interference seldom need retransmission
 - However, other 802.11 networks experience frequent packet loss and depend on retransmission

througput envelope with 802.11g

throughput [Mbps]

througput envelope with 802.11n (40MHz Channelwidth)

