
Hashing	

•  Let	K	be	a	key	space	-	e.g.,	set	of	all	alphanumeric	strings		
•  Want	to	perform	following	typical	opera=ons	on	keys	-	
insert,	lookup	and	possibly	delete	

•  Let	T	be	a	table	of		m	memory	loca=ons	in	which	we	can	
store	(key,pointer)	pairs.		T	is	called	a	hash	table.	

•  	Let	h	be	a	func=on	that	maps	keys	into	table	loca=ons;	
i.e.,	h:	K	-->	[1,m].		h	is	called	a		hash	func=on.	
–  =me	to	compute	h	independent	of	|K|	
–  ideally,	then,	lookup	should	take	constant	=me	

•  	For	any	key,	Kj,	we	store	the	key	(and	a	pointer	to	the	
record	containing	any	informa=on	associated	with	the	
key)	at	loca=on	h(Kj)	in	the	hash	table	

Hashing	

•  Suppose	the	set	of	keys	to	be	inserted	into	the	table	
is	known	in	advance	
–  simplest	case	is	when	these	keys	have	a	“regular”	
structure	

–  example:	Keys	are	all	pairs	of	upper	case	characters.	
•  there	are	262		keys	
•  h(c1c2)	=		26*(index(c1)-1)	+	index(c2)	
•  this	is	the	standard	lexicographic	storage	alloca=on	
func=on	
•  so	sequen=al	memory	alloca=on	for	arrays	is	a	special	
(uninteres=ng)	case	of	hashing	

Hashing	
•  But	what	if	the	“known”	keys	are	some	random	
sample	of	12	character	strings?	
–  then	it	would	be	very	difficult	to	iden=fy	a	“perfect”	
hashing	func=on,	h,	whose	computa=onal	=me	
complexity	is	independent	of	the	size	of	the	set	of	
keys.	
•  could	arrange	the	keys	in	a	binary	search	tree,	and	
use	some	ordering	of	the	nodes	in	the	tree	to	
define	a	hashing	func=on,	but	then	it	would	take	
log(n)	=me	to	compute	h.	

Hashing	

•  So,	we	have	to	define	some	general	hashing	func=on,	
independent	of	the	elements	of	K	that	we	happen	to	
insert	into	the	table	
–  no=ce,	though,	that	if	the	number	of	keys	we	insert	is	
comparable	in	size	to	the	size	of	the	table,	T,	then	it	is	VERY	
unlikely	that	our	hashing	func=on	would	be	1-1,	so	that	some	
subsets	of	keys	will	hash	to	the	same	address	in	T.		When	h(k1)	=	
h(k2)	we	have	a	collision	

–  alterna=vely,	we	can	make	|T|	>>	the	number	of	keys	we	might	
ever	insert	-	wastes	storage	and	we	s=ll	might	have	collisions	

Hashing	

•  Key	technical	problems:	
–  	What	is	a	good	hash	func=on?	
–  	When	two	keys	hash	to	the	same	table	loca=on	how	do	we	
resolve	the	collision?	
•  Generally,	the	=me	to	retrieve	a	key	in	a	hash	table	is	a	
func=on	of	the	collision	pa`ern	it	exhibits	with	respect	to	
the	previously	inserted	keys	
•  And	how	do	memory	hierarchies	impact	this?	

– When	we	insert	a	key,	is	there	a	way	to	re-arrange	the	keys	to	
make	subsequent	lookups	more	efficient?	

– What	do	we	do	if	the	table	“fills	up”	(if	its	load	factor	exceeds	
some	cri=cal	value	for	good	performance)?		

Simple	hashing	func=ons	
•  A	good		hashing	func=ons	should	:	
	a)	be	easy	to	compute	-	have	constant	=me	complexity	
	b)	spread	the	keys	out	evenly	(uniformly)	in	the	hash	table	-	
if	key	k	is	drawn	randomly,	probability	that	h(k)	=	i	should	
be	1/m,	where	m	=	|T|,		and	independent	of	i.	

•  	If	k	is	regarded	as	an	integer,	then	h(k)	=	kmod	m	is	a	good	simple	
method	
	a)	if	keys	are	alphabe=c,	then	m	should	not	be	a	power	of	2	
since	kmod	m	will	then	be	the	lower	order	bits	of	k,	
independent	of	the	rest	of	k	
	b)	ordinarily	choose	m	to	be	prime	(several	reasons,	TBD)	

Simple	hashing	func=ons	

•  K	mod	m	works	very	well	when	the	keys	
are	really	uniformly	distributed	from	the	
space	of	all	possible	keys.			

•  But	as	the	set	of	keys	deviates	from	
uniform,	its	performance	degrades	rapidly	
–	get	lots	of	collision	even	though	the	
table	is	nearly	empty.		

Conflict	resolu=on	by	chaining	

•  	Separate	chaining:		T[i]	does	not	store	a	single	key	,	but	is	a	
pointer	to	a	list	of	all	keys	encountered	such	that	h(k)	=	i.	

•  If	the	number	of	collisions	is	small,	a	simple	linked	list	is	
sufficient	to	store	all	colliding	keys	

•  Data	structure	is	on	two	levels	-	hash	table	that	divides	
entries	into	m	linked	lists.	

•  Lists	are	referred	to	as	buckets.		
•  During	a	lookup	or	insert	opera=on,	each	access	to	the	data	
structure	is	called	a	probe.	

Separate	chaining	

•  average	number	of	probes	to	find	a	key	
in	the	table	is	(4*2	+	3*3	+4)	/	8	=	2.67	

•  For	a	hash	table	with	m	loca=ons,	if	we	
insert	n	records	into	the	table,	then	we	
say	the	load	factor	of	the	table	is	a	=	n/m	
–  For	the	table	above,	a	=	
1.0	

–  For	a	table	with	separate	
chaining,	a	can	be	less	
than	or	greater	than	1.	
Other	methods	will	only	
lead	to	a	<	1.	

–  Expected	cost	of	search	is	
propor=onal	to	load	factor	

d e

dr

ab gh re

fed ton

T

Coalesced	chaining	

•  Seems	crazy	to	use	memory	for	links	and	keys	–	maybe	just	make	a	
bigger	hash	table	to	begin	with	and	reduce	frequency	of	collisions!	

•  But	where	do	we	store	colliding	keys?	
•  In	the	table	itself!	
•  Use	the	empty	cells	of	the	hash	table	to	store	the	elements	in	the	

chain	
•  	When	a	collision	is	encountered	during	an	inser=on,	find	the	next	

open	slot	in	the	table	and	place	the	key	there,	linking	it	into	the	
chain	
–  This	slot	might	be	required	for	a	subsequent	inser=on	
–  	Just	treat	this	as	another	collision	and	perform	another	sequen=al	

search	for	an	open	slot	

Coalesced	Chaining	

•  Lookup	opera=on	is	implemented	the	same	
as	separate	hashing,	but	the	implicit	chains	
can	contain	elements	with	several	different	
hash	values	
– But	all	elements	with	a	given	hash	value	are	in	
the	same	chain	

–  If	an	empty	slot	is	encountered,	search	fails	

Example	of	coalesced	chaining	
Inser=on	order:	
d	
dr	
e	
ab	
gh	
re	
fed	
ton	

d e

dr

ab gh re
fed ton

T

d d

dr

d

dr
e

d

dr
e

ab

d

dr
e

ab

d

dr
e

ab
gh
re

- - 2 2 2 2

-
-
-

-
-

-

-
-

7

-
-

7
8
-

gh -

d

dr
e

ab
gh
re

-

2
-
-

7
8
4

fe

d

dr
e

ab
gh
re

5
-

2
-
-

7
8
4

fe
to

Open	addressing	strategies	

•  Generaliza=on	of	coalesced	chaining	–	eliminate	links!	
•  	For	each	key,	its	chain	is	stored	in	the	hash	table	in	a	
(key	dependent)	sequence	of	posi=ons	
–  probe	sequence	-	sequence	of	table	posi=ons	belonging	to	a	
chain	

–  H(k,p)	denotes	the	p'th	posi=on	tried	for	key	k,	where	p	=	0,	
1,		...	

•  	To	search	for	a	key,	look	at	successive	loca=ons	in	
probe	sequence	un=l	either	the	key	is	found	or	an	
empty	table	posi=on	is	encountered	
–  	if	key	is	to	be	inserted,	it	can	be	at	that	open	posi=on	

Sequen=al	or	linear	probing	

•  H(k,p)	=	h(k)	+	pc	
•  If	h(k)	=	i,	then	the	probe	
sequence	is	i,	i+c,	i+2c,	...	

•  c	has	to	be	rela=vely	
prime	to	m	to	ensure	all	
loca=ons	are	on	the	
sequence;	let’s	assume	
c=1	

•  In	this	case,	if	last	posi=on	
in	table	is	m-1	and	probe	
sequence	reaches	m-1,	
next	loca=on	probed	is	0	
(wrap	around)	 Insertion sequence: a c g a’ b i c’ a’’

a

a'
c
b
c'
a''

g

i

1

2
1

3
3

6
1

1

Key Probes to
find

a

c

g

1

1

1

Key Probes to
find

a

a'
c

g

1

2
1

1

Key Probes to
find

a

a'
c
b

g

1

2
1

3

1

Key Probes to
find

Insertion sequence: a c g a’ b i c’ a’’

a

a'
c
b
c'

g

i

1

2
1

3

1

1

Key Probes to
find

a

a'
c
b

g

1

2
1

3

1

Key Probes to
find

a

a'
c
b

g

i

1

2
1

3

1

1

Key Probes to
find

Insertion sequence: a c g a’ b i c’ a’’

3

a

a'
c
b
c'

g

i

1

2
1

3

1

1

Key Probes to
find

a

a'
c
b
c'

g

i

1

2
1

3

1

1

Key Probes to
find

a’’ 6
3 3

Linear	probing	
•  Easy	to	implement	
•  	Good	behavior	when	table	is	not	full	
•  	Primary	clustering	-	once	a	block	of	a	few	con=guous	
loca=ons	is	formed,	it	becomes	a	"target"	for	subsequent	
collisions	
–  collision	makes	the	cluster	become	larger	
–  the	larger	the	cluster,	the	bigger	a	target	it	is	for	more	collisions	

•  	Simple	solu=on	of	using	the	probe	sequence	i	+	kj	will	not	
work	-	clusters	will	just	become	sequences	of	the	form	i,	i
+kmod	m,	i+2k	mod	m,	...	

Open	addressing	with	double	hashing	

•  	Clusters	can	be	broken	up	if	the	probe	sequence	for	a	
key	is	chosen	independent	of	its	primary	posi=on	

•  	Use	two	hash	func=ons:	
	1)	h	determines	the	first	loca=on	in	the	probe	sequence	
	2)	h'	will	be	used	to	determine	the	remainder	of	the	
sequence;	h'	will	depend	on	k.	

•  	H(k,0)	=	h(k)	
–  			H(k,	p+1)	=	(H(k,p)	+	h'(k))	mod	m	

•  	In	linear	probing,	h'(k)	=	1	for	all	k	

Open	addressing	with	double	hashing	

•  Probe	sequence	should	visit	all	of	the	
entries	in	the	table	

•  	So,	h'(k)	must	be	greater	than	0	and	
rela=vely	prime	to	m	for	any	k	
-	h'(k)	and	m	should	have	no	common	divisor	
-	if	d	were	a	common	divisor	then	
(m/d	*	h'(k))	mod	m	=	(m	*h'(k)/d))	mod	m		=	0	
	-	so	m/d'th	probe	in	the	sequence	would	be	
the	same	as	the	first	

•  	Simplest	solu=on	is	to	choose	m	to	be	
prime	

Example:
m = 32
h'(k) = 6
h(k) = 4
probe sequence is:
4, 10, 16, 22, 28, 2, 8,

14, 20, 26, 32, 6,
12, 18, 24, 30, 4, ...

common divisor is 2
32/2 = 16 unique table

addresses
generated.

Exponen=al	double	hashing	

•  H(k,i)	=	h(k)	+	(a**i)h’(k)	mod	m	
–  a	is	a	constant,	m	is	prime,	a	is	a	“primi=ve	root”	of	k	
–  If	h(k)	=	k	mod	m	and	h’(k)		=	k	mod	m-2,	then	probe	
sequences	will	touch	all	of	the	entries	in	the	table.		

–  The	sequences	will	be	more	random	than	the	simple	
double	hashing	method.		

•  Prac=cally,	this	hashing	method	works	much	
be`er	when	the	keys	deviate	from	being	
uniformly	distributed	(like	variable	names	in	a	
program).		

How	caches	affect	hashing	
•  Modern	computers	have	several	levels	of	
memory	–	L1	cache,	L2	cache,	memory,	disk.	

•  Performance	of	any	program	depends	on	how	
oxen	its	memory	references	hit	the	cache	
– Otherwise	you	bring	some	block	of	memory	down	the	
memory	hierarchy	and	push	some	block	up.		Takes	
=me.	

•  Which	hashing	method	would	you	expect	to	
generate	the	most	cache	hits?	
–  Intui=vely,	linear	hashing	since	it	probes	sequen=al	
loca=ons	in	memory!	

How	caches	affect	hashing	

•  But	it	DEPENDS	on	
–  The	load	factor	of	the	table	(percentage	of	table	loca=ons	filled),	

and	
–  How	much	the	keys	inserted	in	the	table	deviate	from	being	

uniformly	distributed	in	the	key	set.	
•  In	fact,	if	the	keys	were	uniformly	distributed	(which	they	never	

are)	then	linear	hashing	is	best	at	almost	all	load	factors.	
•  But	as	the	key	set	deviates	from	uniformity	and	load	factors	get	

larger	than	20-30%,	double	hashing	schemes	work	be`er,	
exponen=al	the	best.	

•  Heileman,	Gregory	L.,	and	Wenbin	Luo.	"How	Caching	Affects	
Hashing."	ALENEX/ANALCO.	2005.	

Test	data	for	hashing	

•  Name 	 	Date	of	Death 	h(K) 	h'(K)	
•  J.	Adams 	7/4/1826 	 	4 	7	
•  S.	Adams 	10/2/03 	 	2 	10	
•  J.	Bartle` 	5/19/95 	 	19	 	5	
•  C.	Braxton 	10/10/97 	 	10 	10	
•  C.	Carro	l 	11/14/32 	 	14 	11	
•  S.	Chase	 	6/19/11 	 	19 	6	
•  A.	Clark 													9/15/94 	 	15 	9	
•  G.	Clymer 	1/23/13 	 	23 	1	
•  W.	Elery	 	2/15/20 	 	15 	2	
•  W.	Floyd 	8/4/21 	 	4 	8	
•  B.	Franklin 	4/17/90 	 	17 	4	
•  E.	Gerry	 	11/23/14 	 	23 	11 		
•  B.	Gwinnet 	5/19/77 	 	19 	5	
•  L.	Hall 	 	10/19/90 	 	19 	10	
•  J.	Hancock 	10/8/93 	 	8 	10	
•  B.	Harrison 	4/24/91 	 	24 	4	
•  J.	Hart 	 	5/11/79 	 	11 	5	

Example	-	Open	addressing	
with	double	hashing	

13
14

15
16
17

18
19
20

21
22
23
24

J. Bartlet 1

C. Carrol 1

A. Clark 1

G. Clymer 1

R. Ellery 2

B. Frankl 2

B. Gwinn 2

25
26

27
28
29
30

31

S. Chase 2

L. Hall 2
B. Harris 2

1
2
3
4
5

6
7

8
9
10

11
12

J. Adams 1

S. Adams 1

C. Braxto 1

W. Floyd 2

E. Gerry 2

J. Hanco 1

J. Hart 1

Brief	review	

•  What	is	a	good	hash	func=on?	
–  Should	spread	keys	around	the	table	“randomly”	
–  Should	be	efficient	to	compute	(constant	=me)	

•  Collisions	are	inevitable.		How	do	we	handle	them?	
–  Separate	chaining	–	linked	lists	pointed	to	by	hash	table	elements.		
Wasteful	–	use	space	for	links	to	build	a	bigger	table	to	begin	with.	

–  Implicit	collision	chains	stored	in	the	table	
•  Linear	probing	–	same	rela=ve	collision	sequence	for	every	key	
•  Double	hashing	–	different	collision	sequences	for	different	keys	

Next	

•  How	can	we	make	lookup	more	efficient?	
–  By	ensuring	that	the	keys	encountered	on	a	collision	chain	are	
weakly	ordered	–	then	if	we	encounter	a	key	on	the	collision	
chain	that	is	“larger”	than	the	query,	we	can	terminate	search	
with	failure.	
•  This	will	cause	unsuccessful	lookups	to	fail	early,	but	will	
not	improve	the	search	cost,	on	average,	for	successful	
lookups	

–  Since	collision	chains	overlap,	maybe	we	can	move	keys	
around	on	their	collision	chains	to	shorten	them.	
•  This	will	reduce	the	search	cost	for	successful	lookups	as	
well	as	reduce	the	search	=me	for	unsuccessful	ones	(since	
the	individual	collision	chains	are	mostly	shorter)	

Ordered	hashing	

•  In	the	example,	names	were	inserted	in	
alphabe=cal	order	

•  	So,	all	of	the	chains	constructed	had	their	data	
in	alphabe=cal	order	

•  	This	would	allow	us	to	terminate	an	
unsuccessful	search	whenever	we	encounter	an	
element	on	a	chain	that	follows	the	search	key	
lexicographically.	

Ordered	hashing	

•  	In	separate	chaining	we	can	easily	maintain	the	
individual	linked	lists	in	alphabe=c	order	

•  	Can	we	do	this	with	open	addressing?	
– No,	but	we	can	come	close	

•  	Property	to	be	maintained:	during	the	probe	
sequence	for	k,	keys	encountered	before	
reaching	k	are	smaller	than	k	

Ordered	hashing	

•  Trick:		As	the	probe	sequence	for	key	k	is	followed	during	
inser=on,	if	a	key	k'	is	encountered	such	that	k	<	k',	replace	k'	by	k	
and	proceed	to	insert	k'	as	dictated	by	its	probe	sequence.	

•  	Why	does	this	create	a	hash	table	with	the	desired	property?	
Proof	by	induc=on:	

	1)	When	the	table	is	empty,	the	property	holds	trivially.	
	2)	Table	can	be	extended	in	one	of	two	ways:	
				a)	pu}ng	a	key,	which	is	greater	than	any	of	its	predecessors	
(i.e.,	no	interchanges)	in	a	previously	empty	slot	
				b)	replace	a	key	in	the	table	by	a	smaller	key	-	but	then	any	
lookup	that	went	through	the	k’	will	go	through	k	also	since	k	
<	k’.	
		

Ordered	hashing	

•  “Obviously”,	the	final	state	of	
the	hash	table	for	a	given	set	
of	keys	will	be	the	same,	
regardless	of	the	order	in	
which	the	keys	are	inserted	
into	the	table!	
h(k) = index of first letter of k
in the alphabet
h'(k) = index of second letter
of k
Using only first 13 letters
of alphabet

Insert:
ago
def
ace
dag
abe

ago 1

Example	
Insert:
ago
def
ace
dag
abe

ago 1

def 1

ace 1

def 1

ago 2

ace 1

dag 1

ago 2
def 2

0

2

4

6

8

10

12

Example	

Insert:
ago
def
ace
dag
abe
ade

0

2

4

6

8

10

12

ace 1

dag 1

ago 2
def 2

abe 1

ace 2

ago 2
def 2

dag 2

abe 1

ace 2

ago 2
def 2

ade 2
dag 3

Ordered	hashing	

•  If	we	insert	a	set	of	keys	into	a	hash	table	
using	ordered	hashing,	then	the	collision	
chains	sa=sfy	the	following	property:	
– Any	keys	encountered	on	the	collision	chain	for	a	
key,	k,	will	precede	k	lexicographically.	

•  The	keys	on	the	collision	chain	will	NOT	
necessarily	be	sorted	(in	fact	they	typically	will	
not	be).	

ba	

ab	 ba	

ab	 ba	 bb	

ab	 ba	 bb	 ad	

ab	 ba	 bb	 ad	 da	

ab	 ba	 bb	 ad	 bd	 da	

Brent's	method	

•  During	inser=on	process,	rearrange	keys	so	that	collision	
lists	are	shorter,	and	subsequent	searches	are	faster.	

•  	Good	when	searches	are	more	common	than	inser=ons,	
because	inser=ons	are	expensive	

•  	Called	self-organizing	double	hashing	
•  	Let	p0,	p1,	...,	pt	be	the	sequence	of	table	addresses	
generated	by	a	double	hashing	func=on	for	some	key	k	
before	encountering	an	empty	table	posi=on,	pt.	

•  If	we	insert	k	at	pt,	then	any	subsequent	search	for	k	will	
require	t+1	probes	

Brent's	method	

•  Now,	we	could	replace	any	of	the	keys	in	loca=ons	p0,	
p1,	...,	pt-1	with	k	and	shorten	the	search	(in	terms	of	
number	of	probes)	for	k.		Suppose	we	place	k	in	pr	

•  	But	then	we	have	to	move	the	displaced	key,	k',		in	pr	
somewhere	
–  one	place	to	put	it	is	at	the	end	of	its	chain	
–  if	the	savings	in	placing	k	at	pr		-	(t-r)	-		is	greater	than	the	
extra	work	in	subsequent	searches	for	the	key	stored	
originally	at	pr(the	length	of	the	chain	star=ng	at	pr),	then	
the	switch	will,	overall,	save	search	=me.	

Simple	example	

Can insert new key here
and cost is 7 probes

How did the key in the blue box get there?
Hashed to it directly (earlier), or
the blue box is on its collision chain

If we insert the new
key here, and move
the key stored there
to here, then the total
incremental probe cost is
5

Brent's	method	

•  We	will	visualize	the	hash	table	as	being	a	2-d	grid	
•  	The	i'th	column	will	be	the	collision	chain	star=ng	at	
pi	
–  	 Note	that	this	does	not	mean	that	the	key	stored	at	pi	is	
the	first	element	in	its	chain	-	but	the	algorithm	works	in	
any	case,	because	the	extra	number	of	probes	needed	to	
find	the	key	at	pi	is	the	distance	between	pi	and	the	end	of	
the	chain	passing	through	pi.	

•  	The	j'th	row	will	contain	the	address	of	the	j'th	
element	on	each	collision	chain	(or	will	be	empty	if	
some	collision	chain	has	fewer	than	j	elements)	

Brent's	method	

•  The	columns	are	really	of	different	lengths,	
ending	at	the	first	empty	loca=on	in	each	
collision	chain.	

•  	Try	to	insert	k	as	close	to	p0	as	possible	
•  	Let	Lj	be	the	length	of	the	chain	in	column	j.	
•  	Find	the	chain	that	maximizes	(t-j)	-	Lj	(savings-
addi=onal	cost)	

p0 p1 p2 p3 p4 ••• pt
p0+c0 p1+c1 p2+c2 p3+c3 p4+c4
p0+2c0 p1+2c1 p2+2c2 p3+2c3 p4+2c4
p0+3c0 p1+3c1 p2+3c2 p3+3c3 p4+3c4

• • •

Brent's	method	

p0 												p1										 	p2											p3										p4 								p5	
1	(5,1) 	3	(4,1) 	6	(3,1) 	10	(2,1)	15	(1,1)	
2	(5,2) 	5	(4,2) 	9	(3,2) 	14	(2,2)	
4	(5,3) 	8	(4,3) 	13	(3,3)	
7	(5,4)	 	12	(4,4)	
11	(5,5)	

Gonnet-Munro	

•  Brent’s	algorithm	only	moves		keys	on	the	
probe	sequence	of	the	inser=on	key	to	the	
end	of	their	probe	sequences	

•  Gonnet-Munro	will	consider	moving	keys	
that	are	on	these	probe	sequences,	and	on	
those	keys’	probe	sequences,	also.	
– requires	some	systema=c	way	of	searching	
through	these	collision	chains	

Gonnet	Munro	example	

p0=Tim
Joan
Ron
Rita

-

p1=Alan
Ruth

-
-
-

p4=-
-
-
-
-

p2=Jay
-
-
-
-

p3=Katy
Kim
Alex
Bob

-

Joan
-
-
-
-
-

Rita
Jay

Kim
Fay

-
-

Kim
-
-
-
-
-

Ruth
Tim

-
-
-
-

Ron
Kathy
Alan
Jay
Jill
-

Alex
-
-
-
-
-

Bob
-
-
-
-
-

Fay
-
-
-
-
-

Jill
-
-
-
-
-

Gonnet	Munro	

•  Suppose	we	a`empt	to	insert	“Rudy”	which	
takes	us	along	the	probe	sequence	p0,	...,	p4	

•  Brent’s	algorithm	would	replace	“Alan”	with	
“Rudy”	and	would	move	“Alan”	to	the	end	of	its	
probe	sequence	
–  this	saves	3	probes	for	Rudy	and	gives	up	2	probes	
for	Alan,	for	a	savings	of	1	

Gonnet	Munro	

•  But	no=ce	that	we	could	
– replace	Tim	with	Rudy	-	saving	4	probes	
– replace	Joan	with	Tim	-	cos=ng	1	
– move	Joan	one	posi=on	down	her	probe	
sequence	-cos=ng	1	
– for	a	total	saving	of	2,	be`er	than	Brent	

Gonnet	Munro	search	tree	

•  Search	is	conducted	using	a	binary	tree	constructed	
from	the	probe	sequences	
–  lex	most	branch	of	the	tree	will	be	the	original	probe	
sequence	p0,	...,	p4	

–  right	branches	will	represent	probe	sequences	star=ng	from	
these	posi=ons	

–  ...	
•  Each	node	in	the	binary	tree	will	have	fields	for	
–  a	Key	value	
–  the	Loca=on		(LOC)in	the	hash	table	at	which	this	key	value	is	
stored	

–  The	secondary	hash	func=on,	INC,	for	Key.			

Gonnet	Munro	search	tree	

•  The	root	of	the	tree	has	
– LOC	=	h(k),	where	k	is	the	key	to	be	inserted	
–  INC	=	h’(k)	
– Key	=	original	key	at	posi=on	LOC	

•  Given	any	node,	S,	in	the	tree	
–  its	lex	son,	LS,	corresponds	to	LOCS	+	INCS	
•  LOC	LS	=	LOCS	+	INCS	
•  INCLS	=	INCS	
•  KeyLS	=	key	stored	at	H[LOCS	+	INCS]	

–  its	right	son,	RS,		is	the	next	loca=on	encountered	in	the	
probe	sequence	of	KeyS	
•  LOCRS	=	LOCS	+	h’(KeyS)	
•  INCRS	=	h’(KeyS)	-	lex	chain	from	RS		will	be	probe	
sequence	for	KeyS	

The	Tree	

Alex

Bob

-

Kim

Fay

- -

-

Jay

Jill

- -

- - Tim

-
Bob

-

-

h(Tim) + [c+1]h’(Tim) =
h(Joan) + c’(h’(Joan))

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Rudy, Tim
Joan

Ron

Rita

-
Jay

Katy

Alan
Kim

Alex Ruth

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

The	Algorithm	

•  Generate	probe	tree	from	top	to	bo`om	and	lex	to	right	
un=l	encountering	the	first	null	posi=on	in	some	hash	
chain.	

•  Keys	will	be	moved	along	the	path	from	the	root	to	this	
empty	posi=on	using	the	following	recursive	step:	
–  Algorithm	is	at	node	N	holding	key	KN	trying	to	insert	key	
KNEW.	

– Move	along	any	lex	links	in	path	to	NULL	node	un=l	
encountering	either	
•  NULL	posi=on	-	insert	KNEW	and	halt	
•  Right	pointer	to	N’	-	insert	KNEW	at		father	of	N’	and	insert	original	
key	at	father	of	N’	in	tree	rooted	at	N’.	

Example	
Rudy, Tim

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Joan

Ron

Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

Example	

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Tim, Joan

Ron

Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

Rudy

Algorithm is at node N holding key KN trying to insert key KNEW.
Move along any left links in path to NULL node until encountering either

NULL position - insert KNEW and halt
Right pointer to N’ - insert KNEW at father of N’ and insert original key at father of N’ in
tree rooted at N’.

Example	

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Tim

Ron

Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

Rudy

Joan

+1

+1

Algorithm is at node N holding key KN trying to insert key KNEW.
Move along any left links in path to NULL node until encountering either

NULL position - insert KNEW and halt
Right pointer to N’ - insert KNEW at father of N’ and insert original key at father of N’ in
tree rooted at N’.

Example	

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Joan

Ron

Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

Rudy, Tim

-

Example	
Rudy

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Tim, Joan

Ron

Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

-

Insert Tim at tree rooted at Joan -
follow left links first

Example	
Rudy

Alan

Jay

Katy

- Kim

Ruth

- - Tim

Joan

Ron

Tim, Rita

-
Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

-

Example	

Joan

Ron

Rita, Jay

Katy

Alan
Kim

h(Rudy) =
h(Tim) + c(h’(Tim))

h(Ron) + c’’’(h’(Ron))=
h(Joan) + [c’+1] h’(Joan) -

-

Alan

Jay

Katy

- Kim

Ruth

- - Tim
Tim

-

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

Rudy

Gonnet	Munro	not	perfect	

Alan

Jay

Katy

- Kim

Ruth

Tim

h(Alan) + c’’(h’(Alan) =
h(Rudy) + h’(Rudy)

Rudy
h(Alan) =
h(Rob) +
c’’’(h”(Rob))

Rob

-

Could move Alan back one
position on its collision
chain and move Rob one
position on its chain.

Dele=on	from	hash	tables	
•  Separate	chaining	-	easy,	just	remove	the	entry	
from	the	linked	list	

•  	Open	addressing	-	complicated	since	chains	
"overlap"	-	i.e.,	posi=on	of	a	key	being	deleted	
might	be	on	the	probe	sequence	of	another	key	
s=ll	in	the	table.	

•  	Example	-	sequen=al	probing	
–  insert	key	k	in	posi=on	i	
–  insert	colliding	key		k'	in	posi=on	(i+1)	mod	m	
–  delete	key	k,	making	table	entry	i	empty	
–  search	for	key	k',	but	find	empty	slot	at	posi=on	i.	

Dele=on	from	hash	tables	
•  Solu=on:		Add	a	one	bit	deleted	flag	to	each	table	entry.	

–  search	proceeds	over	any	entry	with	the	deleted	bit	set	to	1	
–  inser=on	occurs	at	the	first	posi=on	that	is	empty	or	has	

dele=on	bit	set	to	1.	
•  	Problem:		Searches	become	lengthy	axer	a	large	number	

of	inser=ons	and	dele=ons	have	occurred	
•  	Deleted	bit	can	also	be	used	with	other	collision	resolu=on	

strategies,	but	they	also	suffer	from	degraded	performance	
over	=me.	

•  	An	expensive	solu=on	is	to	rehash	the	en=re	table	from	
scratch	

Extendible	hashing	

•  Main	disadvantages	of	open	addressing:	
	1)	dele=ons	cause	performance	to	be	degraded	since	table	is	
clu`ered	with	"deleted"	entries.	
	2)	size	of	the	table	cannot	be	adjusted	if	the	number	of	
entries	is	larger	than	an=cipated	

•  	Only	solu=on	is	to	allocate	a	new	table	and	rehash	the	
contents	of	the	old	table	

•  	Extendible	hashing			
	1)	allows	table	to	grow	and	shrink	
	2)	Approach	will	extend	to	spa=al	data	

Extendible	hashing	

•  Two	level	data	structure:		directory	(memory)		and	
a	set	of	leaf	pages	(disk).	

•  	Directory	is	a	table	of	pointers	to	leaf	pages	
•  	Data	records	are	stored	in	the	leaf	pages,	which	
are	of	fixed	size,	b.		

•  	Use	a	hash	func=on	that	maps	keys	to	bit	strings	
of	length	L	
–  for	d	<=	L,	let	Hd(k)	be	the	first	d	bits	of	H(k).		This	is	
called	the	d-prefix	of	H(K).	

•  	Example:	L	=	5,	H(k)	=	01010,	then	H3(k)	=	010.	

K

Extendible	hashing	

•  A	leaf	page	
consists	of	all	keys	
whose	hash	
values	have	a	
par=cular	prefix.		
The	length	of	this	
prefix	is	called	the	
depth	of	the	page	

•  Maximum	depth	
of	any	leaf	page	is	
called	the	depth	
of	the	table,	D	(=3	
in	the	example)	

000
001
010
011
100
101
110
111

2

3

3

1

00001

01001
01010

01110

10110
11100

these are the
hash
values, not
the keys

Extendible	hashing	

•  Directory	is	a	table,	T,	of	
length	2D	containing	pointers	
to	leaf	pages.	

•  	To	locate	page	containing	
key	k,	compute	HD(k)	and	
follow	the	pointer	in	T[HD(k)].	

•  	If	the	depth	of	a	leaf	page	is	
less	than	the	depth	of	the	
table,	several	pointers	will	
point	to	it.	

•  	specifically,	a	leaf	page	of	
depth	d	will	be	pointed	to	by	
2D-d		consecu=ve	entries	of	T.		

000
001
010
011
100
101
110
111

2

3

3

1

00001

01001
01010

01110

10110
11100

Directory	is	a	trie!	

•  	Directory	is	the	top	
level	of	a	trie,	
discrimina=ng	the	
first	D	bits	of	the	
hash	value	of	a	key.	

•  	Individual	leaf	
pages	can	be	open-
addressed	hash	
tables,	binary	
search	trees,	tries	-	
whatever	you	want	

0 1 1 10110
11100

2 00001 0 1

3 3 01001
01010

01110
0 1

Inser=ng	into	a	full	leaf	page	-		
trie	spli}ng	

•  	If	we	insert	a	key	into	a	non	full	page,	no	problem.	
•  	But	if	we	try	to	insert	into	a	full	page,	we	must	split	
the	page.	Split	is	accomplished	by	:	

	1)	increasing	the	depth	of	the	full	page	and	crea=ng	a	
"buddy"	page	(extend	the	trie	one	level	below	the	
overflowed	bucket)	
	2)	distribute	the	records	to	the	two	new	pages	
appropriately	(based	on	their	d+1	prefixes)	
	3)	May	have	to	iterate	this	process	if	all	keys	fall	in	one	of	
the	buddies	

Inser=on	example	

Example: Insert key with hash value 11101 into table

000
001
010
011
100
101
110
111

2

3

3

1

00001

01001
01010

01110

10110
11100

000
001
010
011
100
101
110
111

2

3

2

2

00001

01110

10110

11101
11100

3 01001
01010

Inser=on	into	extendible	hash	
table	

•  What	happens	if	we	split	a	leaf	of	maximal	
depth?	

	a)	changes	the	depth	of	the	table	itself	
	b)	must	double	the	size	of	the	directory	
	c)	generally,	entries	2i	and	2i+1	of	the	new	directory	
point	to	the	same	leaf	page	as	entry	i	of	the	old	
directory,	unless	entry	i	was	the	one	being	split	
	d)	although	if	the	directory	is	represented	as	a	trie	this	
complexity	disappears	–	all	splits	are	treated	the	same	

Example	

2

3

2

2

00001

01110

10110

11101
11100

3 01001
01010

insert 01011 2

3

2

2

00001

01110

10110

11101
11100

4 01011
01010

4 01001

0000
 0001
0010
0011
0100
0101
0110

1000
0111

Dele=on	and	extendible	hashing	

•  Extendible	hashing	can	accommodate	dele=on	
•  	Suppose	entries	2i	and	2i+1	point	to	dis=nct	pages	
of	maximal	depth	

•  	If	dele=ng	an	entry	from	one	of	them	causes	their	
total	size	to	be	<	b,	then	pages	can	be	collapsed		into	
a	single	page	

•  	If	they	were	the	only	leaf	pages	of	maximal	depth,	
then	directory	can	be	halved	in	size	

•  Prac=cally,	don't	always	want	to	collapse	two	half	
full	pages	into	one	full	page	-	next	opera=on	may	
overflow	that	page.	

Linear	hashing	

•  Drawback	of	extendible	hashing	is	that	table	must	double	
to	grow	-	not	a	problem	for	small	tables,	but	a	
disadvantage	for	large	ones	

•  Linear	hashing	allows	the	table	to	grow	one	bucket	at	a	
=me	
–  table	is	extended	when	its	load	factor	passes	a	cri=cal	value	
–  buckets	are	split	“in	sequence”	star=ng	at	0	and	ending	at	2n.	
–  two	hashing	func=ons	are	always	“ac=ve”	-	one	for	split	
buckets	and	one	for	unsplit	

–  when	the	last	bucket	(the	2nth	one)	is	split,	the	table	has	been	
doubled	in	size,	and	a	new	cycle	of	spli}ng	is	begun.	

Linear	hashing	
•  Suppose	that	our	hash	table	currently	contains	m	
buckets,	with	2n	<=	m	<=	2n+1	-1.	

•  Two	hash	func=ons	are	“ac=ve”	
–  hn(k)	=	k	mod	2n	which	is	used	to	access	buckets	m-2n	
through	2n	-	1.	These	are	the	buckets	which	have	not	
been	split	during	this	cycle	of	linear	hashing	

–  hn+1(k)	=	kmod2n+1	which	is	used	to	access	buckets	0	
through	m	-	2n-1	and	buckets	2n	through	m-1.		These	are	
the	buckets	which	have	been	split,	and	the	buckets	
introduced	as	a	result	of	spli}ng.	

Initially, m = 2n
and we have only
one hash function

as algorithm proceeds, buckets
are split and we have two hash functions,
one for the solid area and one for the
“empty” area.

Linear	hashing	

•  Each	entry	in	the	hash	table	stores	the	records	that	hash	to	it	
using	a	primary	bucket,	with	some	capacity,	and	a	sequence	
of	overflow	buckets.	

•  The	load	factor	for	the	table	is	the	percentage	of	its	storage	
being	used	for	records.	

•  When	we	insert	a	record,	we	increase	this	factor.		If	it	passes	
a	cri=cal	value,	then	we	split	one	of	the	buckets,	b.		
–  It’s	records	are	rehashed	using	hn+1.	
–  They	are	distributed	into	buckets	b	and	b+	2n.		This	is	because	the	
hash	func=on	hn+1	looks	at	one	more	bit	than	hn.		If	that	bit	is	0,	
then	the	record	is	kept	in	loca=on	b.		If	that	bit	is	1,	then	it	will	be	
moved	to	b	+	2n.	

Linear	hashing	
•  Algorithm	maintains	a	pointer	s,	which	points	to	the	next	bucket	

to	be	split.	
•  s	starts	at	0;	when	it	reaches	2n,	we	have	split	all	of	the	buckets	

during	the	current	cycle.		At	this	point	we	increment	n	by	1,	and	
reset	s	to	0.	

•  No=ce	that	the	bucket	split	is	not,	generally,	the	bucket	into	
which	the	last	record	was	inserted!		But,	as	records	are	inserted,	
we	will	eventually	split	all	buckets.	

•  The	hash	table	does	not	have	to	occupy	con=guous	memory	-	
we	can	insert	one	level	of	indirec=on	with	a	directory,	allowing	
the	table	to	be	kept	in	fragmented	memory	or	on	disk.	

Example	

h1(k) = k mod 2
s = 0
Total capacity - 3 * table size
critical value = .5
Insert 8 ,7,5

8 7

5

Now, insert 5.
Table passes
critical value.
Split 0.
s <-- 1

8 7

5

Insert 6.
h1(6) = 0,
so use h2
h2(6) = 2

8

7

5 6

Example	

8

7

5 6

• Insert 2
• Table passes capacity
• Bucket 1 is split, and cycle
is reset (s <-- 0)

8 7 5 6

2

Grid	files	-	extendible	
hashing	in	2D	

•  Method	for	storing	large	numbers	of	points	on	external	
storage	

•  Data	space	is	bounded	by	[xm,	xM]	and	[ym,	yM]	and	is	
called	the	grid	space.	
–  at	any	=me	it	is	par==oned	into	a	set	of	rectangular	blocks	

by	a	collec=on	of	grid	lines	
•  Data	points,	themselves,	are	stored	in	buckets	on	disks.		

–  grid	file	contains	one	entry	for	each	block	in	the	current	
par==on	of	the	data	space,		

–  each	entry	in	the	grid	file	is	a	pointer	to	the	bucket	on	disk	
where	the	data	points	contained	within	that	par==on	are	
stored.	

–  buckets	have	a	fixed	capacity	-	overflowing	requires	spli}ng	

Grid	files	

•  If	we	have	m	horizontal	and	
m	ver=cal	grid	lines,	then	we	
have	defined	m2	grid	blocks.	
–  so,	with	2000	grid	lines	(1000	
ver=cal	and	1000	horizontal)	
we	define	1,000,000	grid	
blocks	-	each	a	pointer	to	
where	we	will	find	the	address	
of	the	bucket	(disk	address)	
where	the	data	points	are	
actually	stored.	
	

xm xM

ym

yM

Grid	files	

•  So,	need	two	accesses	to	get	
to	the	points	themselves;	the	
grid	file	is	organized	this	way	
because	many	grid	blocks	can	
point	to	the	same	bucket.	

•  method	assumes	that	the	grid	
lines	themselves	can	be	
stored	in	memory.		If	we	can	
store	the	grid	block	directory	
in	memory	as	well,	then	only	
one	disk	access	is	required.	

xm xM

ym

yM

• adding large point might
require inserting the bold
horizontal line
• don’t want to split all of the
buckets that this line crosses,
requires re-assigning points
• so, will have a many to one
mapping from grid cells to
buckets

Grid	files	

•  	Allow	any	rectangular	set	of	grid	blocks	to	point	to	the	same	
bucket	
–  makes	it	easy	to	split	and	merge	buckets	as	points	are	added	to	or	
deleted	from	the	set.	

•  Determining	the	grid	block	in	which	a	point	(x,y)	lies	
–  	Maintain	two	1-d	arrays	storing	the	x	and	y	values	of	the	grid	lines.	
–  Simple	binary	search	of	each	array	will	yield	the	grid	block	(x’,y’)	
coordinates	of	(x,y)	

–  Since	directory	size	is	known,	can	use	coordinates	of	(x’,	y’)	to	
directly	compute	the	loca=on	on	disk	in	which	this	grid	block	is	
stored	-	say,	using	lexicographic	ordering.	

Upda=ng	grid	files	

•  Ini=ally,	there	is	only	one	grid	block	for	the	
en=re	data	space	

•  Assume	that	bucket	capacity	is	three	points	

Disk directory of pointers to buckets

disk of buckets

Upda=ng	grid	files	

Upda=ng	grid	files	
•  What	is	involved	in	this	update?	
– Must	read	and	update	two	directory	entries	on	disk,	which	
may	or	may	not	be	on	the	same	disk	page	

– Must	update	first	bucket,	and	create	second	bucket	of	
points	-	another	three	disk	accesses	(R/W	original	bucket,	
W	new	bucket)	

add 2 more
points

Upda=ng	grid	files	

•  Bucket	a	is	split	into	buckets	a	and	c	
•  Grid	block	(2,2)	points	to	bucket	b,	even	
though	it	contains	no	points	from	that	
block	-	but	every	block	must	point	to	
some	bucket.	

a

b c

Upda=ng	grid	files	

•  Now	suppose	that	we	add	two	points	to	grid	block	
(2,2)	
–  This	cause	the	associated	bucket,	b,	to	overflow	
–  But	we	do	not	have	to	add	more	grid	lines,	because	we	
had	the	many	to	one	mapping	of	grid	blocks	to	buckets	

a

b c
d

Upda=ng	grid	files	

a

b c
d

a

b c
d

Upda=ng	grid	files	

•  Generally,	once	we	have	a	large	number	of	
grid	lines,	inser=ons	will	only	lead	to	bucket	
spli}ngs	and	not	to	the	inser=on	of	new	grid	
lines.			

•  This	is	important	for	efficiency,	because	when	
we	introduce	new	grid	lines	we	have	to	
rewrite	large	parts	of	the	directory	and	
pointers	to	it.	

Extendible	hashing	in	2-D	-	EXCELL	

•  All	grid	blocks	of	the	same	size	
•  Grid	refinement	for	grid	files	splits	one	interval	
(either	x	or	y)	into	two	intervals	

•  For	EXCELL,	refinement	splits	all	intervals	in	two	
along	fixed	par==on	lines	and	doubles	the	
directory	like	extendible	hashing.	

•  Since	all	grid	blocks	are	the	same	size,	the	linear	
scales	used	by	the	grid	file	are	no	longer	needed.	
Can	use	the	Morton	code	of	the	grid	block	to	
index	into	set	of	pointers	to	data	buckets.	

Example	

Chicago

Mobile

A

Bucket capacity is 2 records

Grid directory implemented as
an array, initially containing one
element corresponding to the
entire space

Inserting Chicago and Mobile
fills up bucket A

Example	

•  Inser=ng	Toronto	
causes	bucket	A	to	
overflow	

•  Must	double	the	
directory	to	include	
2	elements	

•  Split	bucket	A	and	
move	Toronto	and	
Mobile	to	bucket	B	

Chicago

Mobile

A

Atlanta

B

Example	

•  Inser=ng	Buffalo	
causes	bucket	B	
to	overflow	

•  Double	the	
directory	by	
spli}ng	along	y	Chicago

Mobile

A

Atlanta

B

Buffalo

A C

Example	

•  Denver	can	be	
placed	into	bucket	
A	

•  Omaha	also	belongs	
in	bucket	A	
–  bucket	A	can	be	
split	in	two	without	
changing	the	size	
of	the	directory	-	
crea=ng	D	

–  However,	all	of	the	
points	are	in	A!	

Chicago

Mobile

A

Atlanta

B

Buffalo

D C

Denver

Omaha

Example	

•  Split	along	the	
x	a`ribute	
again	doubling	
the	directory	

Chicago

Mobile

A

Atlanta

B

Buffalo

D C

Denver

Omaha

D

E

C

B

Example	
	

•  Insert	Atlanta	into	
bucket	B	-	OK	

Chicago

Mobile

A

Atlanta

B

Buffalo

D C

Denver

Omaha

D

E

C

B

Atlanta

Example	

•  But	inser=on	of	
Miami	into	
bucket	B	cause	B	
to	overflow	

•  Bucket	B	is	split	
into	B	and	F,	but	
the	directory	
does	not	have	to	
be	changed.	

Chicago

Mobile

A

Atlanta

B

Buffalo

D C

Denver

Omaha

D

E

C

F

Atlanta

Miami

Example	

Chicago

Mobile

A

Atlanta

B

Buffalo

D C

Denver

Omaha

D

E

C

F

Atlanta

Miami

1,1

1,2

2,1

2,2

3,1

3,2

4,1

4,2

A

C

D

C

E

F

B

D

