
cd0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

HIERARCHICAL REPRESENTATIONS
OF LINE DATA

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

BACKGROUND
cd1

Goals

hierarchical representation of both a region and its
boundary

1.

no thickness associated with a line segment2.

exact representation3.

Vector data vs: raster data

vector keeps track of the boundary1.

polyline: chain of points with implicit lines
between them

polygon: an area bounded by a closed polyline

chain code: approximation by unit vectors in 4
(or 8) principal directions

compact

raster keeps track of the pixels intersected by line
segments

2.

requires much space as increase the resolution

Advantages of hierarchical representations:

enable focussing computational resources where
they are needed

1.

permit a quick exit (termination) when no more
information can be gained

2.

the distance from a polygon to a point inside it is
zero while the distance from the point to the
polyline that forms the boundary of the polygon
is nonzero

Copyright © 1998 by Hanan Samet

EXAMPLES OF QUERIES ON LINE SEGMENT
DATABASES

cd2

Queries about line segments

All segments that intersect a given point or set of
points

1.

All segments that have a given set of endpoints2.

All segments that intersect a given line segment3.

All segments that are coincident with a given line
segment

4.

Proximity queries

The nearest line segment to a given point1.

All segments within a given distance from a given
point (also known as a range or window query)

2.

Queries involving attributes of line segments

Given a point, find the closest line segment of a
particular type

1.

Given a point, find the minimum enclosing polygon
whose constituent line segments are all of a
specified type

2.

Given a point, find all the polygons that are incident
on it

3.

Copyright © 1998 by Hanan Samet

BSPR (Burton)
cd3

Bottom-up hierarchical curve approximation using
upright rectangles

analogous to a 2-d suite of values (i.e., run) in
merge sorting

preferable to joining successive pairs of line
segments

Ex:

Construct a tree by pairing adjacent simple sections to
yield compound sections

2.

Decompose curve into simple sections

Simple section = segment of a curve whose x and y
coordinate values are monotonic

Process terminates when the entire curve can be
approximated by one compound section

1.

Binary Searchable Polygonal Representation

E

D

C

BA

H

G

F

1
b

Similar to an R-tree where the objects are monotonic
curve segments thereby yielding an object hierarchy

AIDN DJFN HMFK AMHL

2
r

N

M

cd3

I

JK

L

AIJF AFKL

3
z

cd3

IJKL

4
g

cd3

Operations:
point-in-polygon determination1.
polygon intersection2.

5
v

cd3

Copyright © 1998 by Hanan Samet

STRIP TREE (Ballard, Peucker)
cd4

Top-down hierarchical curve approximation

Assume curve is continuous

Ex:

Rectangle strips of arbitrary orientation

1
b

P

Q

Contact points = where the curve touches the box
not tangent points1.
curve need not be differentiable - just continuous2.

2
r

WL

WR

LEFT
SON

RIGHT
SONWRWLYQXQYPXP

cd43
z

A

B

A B

cd44
g

C

D

C D

cd45
v

cd4

Terminate when all rectangles are of width W

Copyright © 1998 by Hanan Samet

SPECIAL CASES
cd5

Closed curve1.

Curve extends beyond its endpoints2.

1
b

cd52
r

enclosed by a rectangle

cd53
z

split into two rectangular strips

Copyright © 1998 by Hanan Samet

APPLICATIONS
cd6

Curve intersection1.

Union of two curves2.

Others3.

length

1
b

area of a closed curve

intersection of curves with areas

etc.

or

cd62
r

NULL CLEAR POSSIBLE

cd63
z

cd64
g

not possible as the result may fail to be continuous

Copyright © 1998 by Hanan Samet

cd7
ARC TREE (Günther)

Recursive decomposition based on arc length

Ex:

Drawback: computing arc length requires evaluating
an elliptical integral

Complete binary tree
nth level approximation has 2n elements
Decomposition process stops when straight line
approximation of each subarc is within a given tolerance

1
b

2
r

C0

3
z

C1C1

4
g

C2

C2

C2

C2

Use ellipses as bounding boxes instead of rectangles

1. place the foci at the endpoints of each subarc
2. the principal axis is the length of the subarc
3. advantage over the strip tree as no need for special

provision for closed curves or curves that extend past
their endpoints

5
v

Two curves are guaranteed to
intersect if their bounding
ellipses intersect and the two
foci of each ellipse are external
to the other ellipse

6
r

POSSIBLY

7
z

YES

Note that intersection of the principal axes of the bound-
ing ellipses is not enough to guarantee intersection

8
g

`

Copyright © 1998 by Hanan Samet

COMPARISON: BSPR, STRIP TREE, ARC TREE
cd8

All independent of grid system in which they are
embedded

1.

BSPR and arc tree do not require special treatment
for closed curves

2.

Uniqueness:3.

BSPR not as flexible as the strip tree or arc tree4.

no for BSPR as depends on the side of the start
no for all when curve is closed

resolution of approximation is fixed since width of the
approximating rectangles cannot be varied

resolution drawback is same as that associated with
hexagonal-based tiling methods

Copyright © 1998 by Hanan Samet

APPLICATION OF THE MX QUADTREE (Hunter)
cd9

A record in a DBMS may be considered a point in multi-
dimensional space

Ex: a line can be a point in 4-d with (x1,y1,x2,y2)

Good for queries about line segments

Not good for proximity queries since points not on the line
(i.e., the query point) are not mapped into the 4-d space

The representative points of two lines that are physically
close to each other in 2-d space may be very far from
each other in 4-d space

Problem is that the transformation only transforms the
space occupied by the lines of the 2-d space and not the
rest of the space (e.g., the query point)

example:
A

B

Copyright © 1998 by Hanan Samet

ONE APPROACH
cd10

A data structure based upon spatial occupancy is the
best solution

1. decompose the space from which the data is drawn
into regions called buckets

3. interest is in methods that are designed specifically
for the spatial data type being stored

Four basic approaches to decomposing space

1. minimum bounding rectangles

2. disjoint cells

3. uniform grid
4. quadtrees

2. with each block only store whether or not it is
occupied by the object or a part of it

i.e., a pointer to a descriptor of the object

non-disjointness forces longer search since
several bounding rectangles may cover an
object, yet the object will only be associated with
one box

object associated with possibly many cells thereby
causing it to be represented more than once!

Q: how to report each object only once!

Copyright © 1998 by Hanan Samet

MINIMUM BOUNDING RECTANGLES
cd15

Objects grouped into hierarchies, stored in another
structure such as a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Does not result in disjoint decomposition of space

Examples include the R-tree and the R*-tree

a

b

c

d

e

f

g

h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

2
r

R3

R4

R5
R6

ic feba hgd

cd15

R3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

cd15

R2:R1:

4
g

R2R1

cd15

R0:

R0

Copyright © 1998 by Hanan Samet

INSERTING A LINE SEGMENT IN AN R-TREE
cd16

traverse the tree starting at the root

Determine the appropriate node1.

Once leaf node has been determined2.

choose the subtree whose minimum bounding
rectangle needs to be enlarged the least (areawise)

add the line segment to the node
check if insertion causes overflow
split node if necessary and redistribute records
propagate split up the tree

Copyright © 1998 by Hanan Samet

SPLITTING AN R-TREE NODE ON OVERFLOW cd17

minimize total area of covering rectangles (coverage)

Reduce likelihood the node will be visited in
subsequent searches

2.

Reduce likelihood that both nodes are examined in
subsequent searches

1.

minimize area common to both nodes (overlap)

Line Segments Goal 2Goal 1

Copyright © 1998 by Hanan Samet

R*-TREE
cd18

R-tree variant with more sophisticated node insertion
and splitting algorithms

choose the subtree whose minimum bounding
rectangle has the minimum increase of amount of
overlap with its brothers (i.e., the other nodes
pointed at by its father) : satisfies goal 1

1.

Node insertion

better than choosing the node whose minimum
bounding rectangle would have to be enlarged the
least : satisfies goal 2

2.

rationale: reduce likelihood that remaining nodes
are examined in subsequent searches

3.

Node splitting - a node has M+1 objects

determine axis (x or y)1.
examine all possible vertical and horizontal splits
(so each resulting node has at least m and at
most M+1-m bounding rectangles)
choose the split axis for which the sum of the
perimeters of the two resulting nodes from all the
possible splits is minimized

determine the position of the split2.

M-2m+2 possibilities
choose the split that minimizes the overlap
between the two new nodes

Copyright © 1998 by Hanan Samet

SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

cd191
b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6R2

R1

Q

May have to examine many nodes since a line segment
can be contained in the covering rectangles of many
nodes yet its record is contained in only one leaf node
(e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Q is in R0

2
v

cd19

Q can be in both R1 and R2

3
r

cd194
z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

cd195
g

Searching R2 finds that Q can only be in R5

cd19

Copyright © 1998 by Hanan Samet

DISJOINT CELLS cd20

Objects decomposed into disjoint subobjects; each
subobject in different cell

In order to determine area covered by object, must
retrieve all cells that it occupies

Techniques differ in degree of regularity

Deletion is achieved in a similar manner

Copyright © 1998 by Hanan Samet

cd21cd21cd21cd21
R+-TREES

Extension of the k-d-B-tree

Pages are not guaranteed to be m/M full without very
complicated node insertion and deletion procedures

Motivated by a desire to avoid overlap among the
minimum bounding rectangles

a

b

c

d

e

f

g

h

i

1
b

2
r

R3

R4

R5

R6

hgd ihc ifcba e iR3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

R1: R2:

4
g

R2R1R0:

R0

Copyright © 1998 by Hanan Samet

cd22

a
b

c

d

e

f

g
h

i

1
bDISJOINT CELLS: K-D-B-TREE

1. Same principle as R+-tree but developed much earlier

• in R+-tree, rectangle at depth i is a minimum bound-
ing rectangle of contained rectangles at depth i+1

• aggregates blocks of k-d tree partition of space
rather than minimum bounding rectangles into
nodes of finite capacity

• both use minimum bounding rectangles for objects
at deepest level

2. R+-tree reduces number of false hits compared to k-d-
B-tree

3. Same drawback of duplicate reporting as in R+-tree

2
r

cd22

R6

R5

R4

R3

iR5: eba R6:R3: gd R4: ihc ifch

cd223
z

R1 R2

R2: R6R5R1: R4R3

cd224
g

R0

R0: R2R1

Copyright © 1998 by Hanan Samet

COMPARISON OF R+-TREES AND K-D-B-TREES
cd23

k-d-B-tree has faster building times than R+-tree1.

Storage costs are the same2.

point search queries are thus faster as failure is
detected earlier

range and nearest line segment queries are faster as
the minimum bounding rectangles lead to more
pruning

R+-tree minimizes dead space3.

Copyright © 1998 by Hanan Samet

HYBRID R+-TREES
cd24

Use minimum bounding rectangle for the line segments
in the leaf nodes while not in the nonleaf nodes

R1 R2

R3 R4 R5 R6

h icg hd e ia b f ic

a
b

c

d

e

f

g
h

i

1
b

R6:R5:

R2:R1:

R4:R3:

R0:

Simplified construction algorithm

Absence of minimum bounding rectangles in the nonleaf
nodes is not so costly given that the number of leaf
nodes is much greater than the number of nonleaf nodes

Use this variant in all tests

2
r

cd24

R3

R4

R5

R6

3
z

R1 R2

cd244
g

R0

cd24

Copyright © 1998 by Hanan Samet

INSERTING A LINE SEGMENT IN A HYBRID R+-TREE
cd25

Place line segment in every leaf node that it intersects

Check if nodes should be split if overflow takes place

1. split so that the resulting total number of portions of
line segments (bounding rectangles if nonleaf node)
is minimized

2. must try all possible horizontal and vertical split lines

for each split line calculate number of line
segments (or bounding rectangles) intersected by
the line

select the line with the minimum number of
intersections

in case of a tie, select the one that yields the most
even distribution of line segments (or bounding
rectangles) among the two constituent nodes

Copyright © 1998 by Hanan Samet

UNIFORM GRID

Ideal for uniformly distributed data

Supports set-theoretic operations

Spatial data (e.g., line segment data) is rarely uniformly
distributed

cd26

Copyright © 1998 by Hanan Samet

QUADTREES

Hierarchical variable resolution data structure based
on regular decomposition

Many different decomposition schemes and applicable
to different data types:

cd27

Supports set-theoretic operations among different
maps and different data types

1. points

2. lines
3.
4.

regions
rectangles

5. surfaces
6. volumes
7. higher dimensions including time

Shape is usually independent of order of inserting the
data

Ex: region quadtree

Copyright © 1998 by Hanan Samet

LINE QUADTREE
cd28

Hierarchical encoding of both the interior and the
boundary of a region

Only works for polygonal data with orthogonal edges

1
b

2
r

Repeatedly subdivide until the leaf nodes represent
regions with no line segments passing through their
interiors

cd283
z

At each leaf node a code indicates which of its four sides
forms a boundary (not a partial border of a region)

cd284
g

cd28

Hierarchical because the information is also recorded for
nonleaf nodes as long as there is no T-junction at the
interior side of the boundary of the block corresponding
to the node

5
v

cd28

Copyright © 1998 by Hanan Samet

MX QUADTREE

• Represent the boundary as a sequence of BLACK
pixels in a region quadtree

• Useful for a simple digitized polygon (i.e., non-
intersecting edges)

• Three types of nodes

1. interior - treat like WHITE nodes
2. exterior - treat like WHITE nodes
3. boundary - the edge of the polygon passes

through them and treated like BLACK nodes

• Disadvantages

1. a thickness is associated with the line segments
2. cannot have more than 4 lines meet at a point

cd291
b

cd292
r

• Raster-to-vector conversion is very difficult
Copyright © 1998 by Hanan Samet

EDGE QUADTREES (Shneier, Warnock)
cd30

Repeatedly subdivide until block contains a single
curve that can be approximated by a single straight line

Ex:

Special nodes at vertices which are at the maximum
level of resolution

1
b

2
r

cd30

Martin's least square quadtree: curve in block can be
approximated by k straight lines within a least square
tolerance

Copyright © 1998 by Hanan Samet

cd31

PM QUADTREES

• Store a collection of line segments

• Divide space into blocks using some rule

1. vertex-based

• limit number of vertices per block (usually one)

2. edge-based

• involves number of edges per block

• Store line segments intersecting each block

• Generally require variable size nodes

• Enables storing vector data (i.e., quadtree is not limited to
raster data)

Copyright © 1998 by Hanan Samet

cd32

a

PM1 QUADTREE
1

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than
one segment unless all the segments are incident at
the same vertex which is also in the same block

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

3

z

c

4

g

d

5

v

e

f

6

r

7

z

g

h

8
g

i

9
v

Copyright © 1998 by Hanan Samet

a

PM2 QUADTREE
1 cd33

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
line segment unless all the segments are incident at the
same vertex (the vertex can be in another block!)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

cd33

c

3
z

cd33

d

4
g

cd33

e

5
v

cd33

f

6
r

cd33

g

7
z

cd33

h

8
g

cd339
v

i

cd33

Copyright © 1998 by Hanan Samet

a

PM3 QUADTREE
1 cd34

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
vertex (i.e., a PR quadtree with edges)

b

Vertex-based (one vertex per block)

Shape independent of order of insertion

b

2
r

cd34

c

3
z

cd34

d

4
g

cd34

e

5
v

cd34

f

6
r

cd34

g

7
z

cd34

h

8
g

cd349
v

i

cd34

Copyright © 1998 by Hanan Samet

cd35

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based
• Avoids having to split many times when two vertices or

lines are very close as in PM1 quadtree
• Probabilistic splitting and merging rules

• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N
• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments
• Splitting threshold is not the same as bucket capacity
• Shape depends on order of insertion

Ex: N = 2

2
r

b

3
z

c

d

4
g

5
v

e

f

6
r

g

7
z

h

8
g

i

9
v

Copyright © 1998 by Hanan Samet

ORGANIZATION OF LEAF NODES IN PM QUADTREES
cd36

PM1 quadtree1.
one segment

set of segments incident at a vertex

PM2 quadtree2.

one segment

set of segments incident at a vertex

PM3 quadtree3.

up to 7 classes of information describing the edges
passing through it

each class can be stored in a balanced binary tree
but a sequential list is usually sufficient unless the
number is unusually high

incident at the vertexa.
crossing the NW, NE, SE, and SW corners of the
node's block

b.

PMR quadtree4.

set of segments passing through the block

store in a sequential list but a splitting threshold
increases (i.e., > 8), performance suffers and
probably preferable to sort

slopea.

x and/or y intercept valuesb.

orientation around a common pointc.

other?d.

crossing the EW and NS sides of the node's blockc.

Copyright © 1998 by Hanan Samet

SAMPLE CALIFORNIA TIGER DATASETS

County Segments Blocks
Q-edges /

Block

Mariposa
Sacramento
Lake
Calaveras
Santa Clara
Imperial

92843
104502
107708
112529
113564
133049

42295
52918
49462
51781
62227
74188

4.43
4.31
4.41
4.36
4.26
4.27

cd44

Q-edges /
Segment

1.58
1.92
1.61
1.65
2.14
1.93

Splitting threshold value of 8

Image resolution (i.e., map size) is 16K x 16K

Copyright © 1998 by Hanan Samet

Q-EDGES PER LINE SEGMENT
cd45

The average number of q-edges per line segment in
the PMR quadtree as a function of the splitting
threshold

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

1

2

3

4

5

1

2

3

4

5

Splitting Threshold

Q-edges /
Segment

Image resolution size (i.e., map size) is 16K x 16K

Observe that as the splitting threshold increases, most
of the line segments are contained in one or two
buckets thereby explaining the asymptotic value of 1.4

Copyright © 1998 by Hanan Samet

ADVANTAGES OF EDGE-BASED METHODS

The decomposition is focussed where the line segments
are the densest

Handles the situation that several non-intersecting lines
are very close to each other

cd46

Able to represent nonplanar line segment data

Good average behavior in terms of node occupancy

Example:

PM1 PMR (N=2)

Copyright © 1998 by Hanan Samet

CONSISTENCY OF PM APPROACH
cd47

Stores lines exactly

Each line segment is represented by a pointer to a
record containing its endpoints

Updates can be made in a consistent manner - i.e.,
when a vector feature is deleted, the database can be
restored to the state it would have been in had the
deleted feature never been inserted

Uses the decomposition induced by the quadtree to
specify what parts of the line segments (i.e., q-edges)
are actually present

1. not a digitized representation
2. no thickness associated with line segments

The line segment descriptor stored in a block only
implies the presence of the corresponding q-edge - it
does not mean that the entire line segment is present
as a lineal feature

Useful for representing fragments of lines such as
those that result from the intersection of a line map with
an area map

Ex:

1
b

2
r

cd473
z

cd47

Copyright © 1998 by Hanan Samet

FRAGMENTS
cd481

b
cd482

r

a

b

d

e
h

cd483

z

4 cd48
g

When a line segment is split or clipped, a line segment
fragment is produced

Fragment any connected piece of a line segment
(including the whole)

Fragments are represented by a collection of q-edges

Copyright © 1998 by Hanan Samet

STORING FRAGMENTS USING PMR
QUADTREES

cd49

Split to localize cutpoints

Ex:

Use PMR splitting rule to prevent excessive node
occupancy

Assume a splitting threshold value of 2

1

b

2 cd49
r

3 cd49
z

4 cd49
g

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENTS a AND b
cd501

b

2 cd50
r

a b

3 cd50

No splitting as a and b are entirely in the window and
the splitting threshold has not been exceeded

z

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENT c
cd511

b

a b

2 cd51
r

c

3 cd51

No splitting as c falls outside the window

z

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENT d
cd521

b

a b

2 cd52
r

d

3 cd52

Three splits to localize the two cutpoints of d as the
endpoints of d fall outside the window

z

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENT e
cd531

b

a
b

d

2 cd53
r

e

3 cd53

Two splits to localize the cutpoint of e as the endpoint
falls outside the window

z

4 cd53
g

One PMR split as 3 q-edges (from a, b, and e) are in
the same block

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENTS f AND g
cd541

b

a
b

d

e

2 cd54
r

g

f

3 cd54
z

No splitting as f and g fall outside the window

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENT h
cd551

b

a

b

d

e

2 cd55
r

h

3 cd55
z

Two splits to localize the cutpoint of h as the endpoint
falls outside the window

4 cd55
g

No PMR split necessary as the splitting thresholds in
the NW quadrant are not exceeded

Copyright © 1998 by Hanan Samet

INSERTION OF LINE SEGMENT i
cd561

b

a

b

d

e
h

2 cd56
r

i

3 cd56
z

No cutpoint localization split is necessary as the
cutpoint falls on the boundary of an existing block

4 cd56
g

One PMR split as 3 q-edges (from b, e, and i) meet at
a vertex and thus are in the same block

Copyright © 1998 by Hanan Samet

MERGING BLOCKS CONTAINING FRAGMENTS

• Must be careful not to destroy decomposition that
localizes cutpoints

• Only merge if siblings contain fewer than N (splitting
threshold value) line segment references and are
compatible

cd57

• Siblings are incompatible if the inner boundaries
contain cutpoints

a

b

c

a

b

Copyright © 1998 by Hanan Samet

MAXIMAL SEARCH RADIUS

P

cd58

Properties of the PM quadtree family (PM1, PMR, etc.)
greatly localize the search area for nearest line segment

Assume that the query point P falls in the SW corner of
the small highlighted block

By virtue of the existence of a block of this size, we are
guaranteed that at least one of the remaining
siblings contains a line segment

1
b

2
r

three

cd583
z

cd58

Copyright © 1998 by Hanan Samet

cd59NEAREST LINE SEGMENT ALGORITHM

A four stage intelligent search process

Maximal search radius equal to length of parent node's
diagonal

Basic algorithm:

Search the block containing the query point1.

1

b
2

Search the three siblings2.

r
cd593

Search the three regions of size equal to that of the
parent that are incident to the block containing the
query point

3.

z
cd594

Search the final four groups of two adjacent blocks
to the previous step

4.

g
cd59

Copyright © 1998 by Hanan Samet

EMPIRICAL TESTS OF THE ALGORITHM
cd60

What is the relationship between map segment
density and the search times for finding the nearest
line segment?

What is the effect of changing the value of the splitting
threshold on the storage requirements of the PMR
quadtree?

What is the effect of changing the value of the splitting
threshold on the execution time?

What is the average execution time for our
implementation of the algorithm?

Copyright © 1998 by Hanan Samet

TESTING ENVIRONMENT
cd61

PMR quadtree with a varying splitting threshold
(i.e., N = 2,4,...,16)

Choice of query points

1.

2.

Not a uniform distribution of points

Use a two stage process

a. uniform distribution of blocks in a particular
map to yield a block containing the query
point

b. uniform distribution within a block to yield the
query point

Data sets are Census Bureau TIGER / Line files

Each B+-tree node is stored in a page of size 1K bytes

Sun SPARCstation 1+ (13.8 SPECint92, 11.1 SPECfp92)

Image resolution (i.e., map size) is 16K x 16K

PMR quadtree is implemented as a linear quadtree
and stored in a B+-tree

Buffer size of 16 pages

Copyright © 1998 by Hanan Samet

NEAREST LINE SEGMENT PERFORMANCE

County Segments
Line Seg
Comps

Mariposa
Sacramento
Lake
Calaveras
Santa Clara
Imperial

92843
104502
107708
112529
113564
133049

19.42
17.85
19.29
18.91
17.06
17.86

Pages
Accessed

5.71
5.93
5.81
5.83
5.90
6.13

cd62

CPU
Seconds

0.0154
0.0156
0.0155
0.0163
0.0148
0.0158

(N = 8)

Observe that the number of comparisons for Imperial
County appears to be ~log2(number of line segments)

Sun SPARCstation 1+

Pages accessed includes the B-tree structure and an
auxiliary segment table.

a

b

d

e
h

i

g

c

f

g x y x y index

Segment Table

f x y x y index

Copyright © 1998 by Hanan Samet

BUCKETS SEARCHED
cd63

The average number of buckets (blocks) searched for
each random nearest line segment query in the PMR
quadtree as a function of the splitting threshold

Buckets
Searched

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

4.5
4.75

5
5.25
5.5

5.75

4.5
4.75

5
5.25
5.5

5.75

Splitting Threshold

The values are stable since the closest line segment is
usually in the query block or its siblings

Copyright © 1998 by Hanan Samet

LINE SEGMENTS COMPARED
cd64

The average number of line segments compared for
each random nearest line segment query in the PMR
quadtree as a function of the splitting threshold

Segments
Compared

4

8

12

16
Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

0

10

20

30

0

10

20

30

Splitting Threshold

Number of comparisons increases with the splitting
threshold since the average bucket size increases

Uses sequential search in each bucket which causes
many line segments to be needlessly accessed and
can be reduced by sorting the line segments in each
bucket

Copyright © 1998 by Hanan Samet

DISK I/O
cd65

The average number of pages (1K page size) read from
disk for each random nearest line segment query in the
PMR quadtree as a function of the splitting threshold.

Pages
Read

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

4
5

6

7

8

4
5

6

7

8

Splitting Threshold

Increases with splitting threshold as buckets contain
more line segments

Also includes the disk pages that must be read to fetch
the line segment data from the segment table which is
disk-resident

Uses sequential search in each bucket which causes
many line segments to be needlessly accessed and
can be reduced by sorting the line segments in each
bucket

Copyright © 1998 by Hanan Samet

CPU TIME
cd66

The average number of cpu seconds (on a Sun
SPARCstation 1+) required for each random nearest
line segment query in the PMR quadtree as a function
of splitting threshold

CPU
Seconds

4

8

12

16 Mariposa

Sacramento

Lake

Calaveras

Santa Clara

Imperial

0.01

0.02

Splitting Threshold

Increases with splitting threshold as buckets contain
more line segments

Uses sequential search in each bucket which causes
many line segments to be needlessly accessed and
can be reduced by sorting the line segments in each
bucket

Copyright © 1998 by Hanan Samet

COMPARISON OF BUILDING TIMES AND SPACE
REQUIREMENTS

cd67

Structure Build Time (secs.) Leaf Nodes

MX quadtree 22.55 19699
edge quadtree 20.48 7723
PM3 quadtree 29.38 3939
PMR quadtree 19.08 2078

VAX 11/785

Splitting threshold value of 4

No method overwhelmingly superior with repect to build
time

PMR quadtree as good or better than other methods

Copyright © 1998 by Hanan Samet

COMPARATIVE INTERSECTION TIMES
cd68

VAX 11/785

Execution times are inversely proportional to the
storage requirements
As node complexity increases, so does the execution
time

PM quadtree execution times can be improved slightly
by sorting the line segments in each block instead of
performing sequential search in each block (result is a
two-level storage hierarchy)

Ex: Intersect road map with floodplain

 Structure Time (secs.)

MX quadtree 4.10
edge quadtree 5.60
PM3 quadtree 6.83
PMR quadtree 8.02

Copyright © 1998 by Hanan Samet

IMPLEMENTATION ISSUES IN MAKING COMPARISONS

cd69

Often details are left out

Danger that compare implementations rather than data
structures

Goal is to implement data structures in way that make
them look best

Ex. R+-tree description is silent on building algorithm
and ideal parameters

Use implementations described in the literature unless
can find something better

Copyright © 1998 by Hanan Samet

MAKING THE TESTING ENVIRONMENTS SIMILAR
cd70

Try to ensure that the data structures all use the same
amount of storage

1. R*-tree always uses less than R+-tree (and PMR
quadtree) since each line segment is stored in only
one block

2. can make node (i.e., page) sizes the same

If a time vs. space issue, then opt for an implementation
that is more time-efficient at the cost of increasing space

PMR quadtree page can store more line
segments than R-tree variants since no need for
bounding box information

Not always possible

1. e.g., node format for R-tree variants

one bounding box for each node, OR

one bounding box for each line segment

2. prefer second choice as otherwise an extra disk
access is needed for each access to a line segment

3. PMR quadtree:

each block is a bounding box but is not a
minimum bounding box as for the R-tree variants

bounding box can be encoded by its locational
code (i.e., x and y coordinate values of a corner
and its size)

Copyright © 1998 by Hanan Samet

ACTUAL IMPLEMENTATION ENVIRONMENT
cd71

Assume database is disk resident and 1K byte nodes

1. linear quadtree (only leaf nodes retained)

2. each line segment passing through a block is a
2-tuple (L,O)

R-tree variants

L is the locational code of the block (4 bytes)

PMR quadtree

1. each line segment and bounding box is a 2-tuple
(R,O)

O points to segment table entry for a leaf node or
a son for a nonleaf node (4 bytes)

2. can store 50 line segments in each page

O is a pointer to a segment table entry (on disk)
for the line segment

3. can store 120 line segments in each page
4. embedded in the QUILT spatial database system

5. splitting threshold is 4 since it is rare for more than
4 roads to intersect

R is minimum bounding box (4 values of 4 bytes)

3. m is 40% of M

Copyright © 1998 by Hanan Samet

QUERIES
cd72

Given an endpoint of a line segment, find all the line
segments that are incident at it (point query)

1.

Given an endpoint of a line segment, find all the line
segments that are incident at the other endpoint of the
line segment

2.

ex: find all roads passing through a given region

Given a point in the two-dimensional space containing
the line segments, find the nearest line segment using
a Euclidean distance metric

3.

Given a point in the two-dimensional space containing
the line segments, find the minimal enclosing polygon
by outputting its constituent line segments

4.

Given a rectangular window, find all the line segments
in the window (range query or window query)

5.

simple search query that does not require that the
space occupied by the line segments be sorted

ex: find nearest subway line to a given house

more efficient when the line segments are sorted

Copyright © 1998 by Hanan Samet

ACTUAL TESTING ENVIRONMENT
cd73

Main statistic is number of disk accesses (actually
where a potential for them exists)

1. can distinguish between operations that access the
same page and those that do not

2. meaningful execution times hard to obtain

Choice of query points

1. uniform distribution

2. two-stage process

drawback is that many of the query points lie
outside the boundary of the map or in large
empty areas

uniform distribution of blocks in a particular map
to yield the block containing the query point

Window queries used .01% of total area

Data sets are Census Bureau TIGER/Line files

HP 720 (58.2 SPECfp92, 36.4 SPECint92)

16K x 16K image

Buffer pool of 16 1K pages using an LRU page
replacement policy

uniform distribution within the block to yield the
query point

Copyright © 1998 by Hanan Samet

DATA STRUCTURE BUILDING STATISTICS
cd74

Observations:

R+-tree is the fastest1.

PMR quadtree requires sorting contents of B-tree
nodes and hence must move data around

2.

R*-tree slow because of expensive node overflow
handler

3.

number of disk accesses are comparable with PMR
quadtree usually smaller

4.

must reinsert about 30% of bounding boxes

R*-tree uses the least space but not by much5.

space requirements of PMR quadtree and R+-tree
are comparable

6.

~50% slower for PMR than R+

slower by about a factor of 8!

10 - 30% less space

Copyright © 1998 by Hanan Samet

EFFECT OF BUFFER AND PAGE SIZES
cd75

Disk accesses decrease as the page size and the size
of the buffer pool increase

Lower values for the PMR quadtree since R+-tree
pages contain fewer line segment tuples

0

20000

40000

60000

51
225

6
38

4

10
2476

8

15
36

20
48

16
24

32

48

40
Page Size (bytes)

Bu
ffe

r S
iz

e
(K

b)

PMR quadtree
disk

accesses

0

20000

40000

60000

51
225

6
38

4

10
2476

8

15
36

20
48

16
24

32

48

40
Page Size (bytes) Bu

ffe
r S

iz
e

(K
b)

R+-tree
disk

accesses

Copyright © 1998 by Hanan Samet

MAP DATA
cd76

Line segment distributions for maps were quite different

1. urban: 5-6 line segments per polygon (Baltimore)

2. suburban: 19 line segments per polygon (Anne Arundel)

Normalize R-tree variants with respect to PMR quadtree

3. rural: 132 line segments per polygon (Charles)

Sample un-normalized data (Charles)

Query Metric PMR R+ R*

Point1 disk I/O 1.55 2.07 2.74
 seg comps 3.48 2.43 2.39
 bbox/bucket comps 1.00 105.02 149.89

Point2 disk I/O 1.72 2.29 2.90
 seg comps 4.43 3.38 3.35
 bbox/bucket comps 2.00 209.75 299.10

Nearest disk I/O 2.21 2.52 3.35
Line seg comps 11.23 27.02 36.16
(2-stage) bbox/bucket comps 5.33 248.01 389.05

Nearest disk I/O 7.18 6.75 3.38
Line seg comps 22.32 75.08 40.35
(1-stage) bbox/bucket comps 8.77 387.86 765.98

Polygon disk I/O 13.19 18.46 14.07
(2-stage) seg comps 451.43 388.23 389.85
 bbox/bucket comps 185.98 16996.69 23730.10

Polygon disk I/O 12.62 18.67 13.43
(1-stage) seg comps 368.10 347.95 333.55
 bbox/bucket comps 152.35 14101.58 20387.28

Range disk I/O 2.93 3.24 3.50
 seg comps 14.70 8.17 6.88
 bbox/bucket comps 16.57 149.24 179.76

Copyright © 1998 by Hanan Samet

BOUNDING BOX COMPUTATIONS
cd83

Bounding bucket comparisons for PMR quadtree is
analogous to bounding box for R-trees but omitted
since 2 orders of magnitude difference in favor of the
PMR quadtree

Contents of a PMR quadtree B-tree node (i.e., page)
are sorted by locational code and thus no need to do
sequential search within the B-tree node as in the R-
variants

We did not count the logarithmic search within each B-
tree node for the right PMR quadtree node

2.0

1.0

Relative
Bounding Box
Computations
by Query Type

(R+ = 1.0)

R+-tree
R*-tree

Point1 Nearest
Line

2-stage

Point2 Nearest
Line

1-stage

Range Polygon
2-stage

Polygon
1-stage

high

low
ave.

Could define R-tree variants to also sort the bounding
boxes but build times will now be slower

R+-tree better than R*-tree since a disjoint
decomposition of space

Copyright © 1998 by Hanan Samet

DISK ACCESSES
cd84

Exclude accesses to segment table

1. R*-tree is better for the polygon query due to the
effect of locality on the repeated application of the
point query

2. R*-tree is better for 1-stage nearest line query due
to the emptyness of the regions queried thereby
forcing larger initial search radii

When the R+-tree is better than the R*-tree, the reason
is the disjoint decomposition of space

Exceptions:

PMR quadtree usually had a slight edge over R-tree
variants

2.0

1.0

0.0

Relative
Disk Accesses
by Query Type

(PMR = 1.0)

R+-tree
R*-tree
PMR quadtree

Nearest
Line

2-stage

Point2Point1 Nearest
Line

1-stage

RangePolygon
2-stage

Polygon
1-stage

max

min
ave.

large initial search radii meant more disk
accesses for PMR and R+ as pages are not
organized by locality to the same extent as the R*

Copyright © 1998 by Hanan Samet

SEGMENT COMPARISONS
cd85

Implies access to segment table which is disk-resident

1. bounding bucket comparisons are very small for the
PMR quadtree

2. PMR quadtree is superior to R-tree variants by
several orders of magnitude

PMR quadtree is significantly better than R-trees for
the nearest line segment query since it sorts the line
segments and hence can prune the search space

Insignificant differences for point and polygon queries

Little actual difference in disk activity as segments are
usually in close proximity

Look at sum of segment comparisons and bounding
box and bucket comparisons as no bounding boxes
stored in PMR quadtree

3. poor range query performance of PMR quadtree is
due to absence of a good bounding box mechanism

2.0

1.0

0.0

Relative
Segment

Comparisons
by Query Type

(PMR = 1.0)

R+-tree
R*-tree
PMR quadtree

Point1 Nearest
Line

2-stage

Point2 Nearest
Line

1-stage

RangePolygon
2-stage

Polygon
1-stage

max

min
ave.

3.0
3.22

Copyright © 1998 by Hanan Samet

CONCLUSIONS
cd86

No overwhelming superiority for any particular data
structure

1.

Choice of data structure depends on repertoire of
operations

2.

choose a splitting threshold value that yields an
average bucket (node) occupancy similar to the
average page occupancy in an R-tree

If operations involve search, then the R+-tree and PMR
quadtree are best as they yield a disjoint decomposition
of space

3.

If results are to be composed with the results of other
operations, then the PMR quadtree is best as it uses a
regular decomposition

4.

R*-tree is most compact space-wise but performance is
not as good as the R+-tree due to non-disjointness of
the decomposition induced by it

5.

Performance could be improved by addressing the
issue of how to organize line segments in each bucket
or node (e.g., sort them)

6.

Splitting threshold plays similar role to bucket capacity7.

Copyright © 1998 by Hanan Samet

