Fall 2018 LISP Programming Project #1 CMSC 420

Hanan Samet

Program the following 13 functions in LISP. Make sure you teem thoroughly. Sample data
will be mailed to you. Turn in a listing of your program and tresults of applying the test data.

1.

Given two sets of atomsandy represented as lists, write functiomsion [x, y], intersection[x,
y] andset_difference[x, y], for their unionx Uy, intersectionk Ny, and set difference

u\ y, respectively. Use the functiatember [n, x] defined below, which may also be written

asn € x:

member (x, u) = if null u then nil
else if car u eq x then t
else member (x,cdr u)

For example(A BC)UB CD)=(ABCD),(ABCON((BCD)=(BC),and(A B
C)\ (B C D) =(A).

Pay attention to getting correct the trivial (i.e., baseyesain which some of the arguments
arenil. In general, it is important to understand clearly the #liziases of functions.

. Given an integet and a listl of integers sorted in increasing order, write a functiefge [n,

1] which insertsn in its proper place iri. For exampleperge[3, ’(2 4)] = (2 3 4),
andmerge[3, ’(2 3)]1=(2 3 3).

. Given two sets of atomsandy represented as ordered lists containing no duplicatesg wri

functionsounion[x, yl], ointersection[x, y] andoset_difference[x, y] giving
the union, intersection, and set difference, respectiwély andy; the result is wanted as an
ordered list.

Note that computing these functions of unordered listssakaumber of comparisons pro-
portional to the square of the number of elements of a typisiaiwhile for ordered lists, the
number of comparisons is proportional to the number of eleme

. Usingmerge, write a function namedort [1] that transforms an unordered listinto an

ordered list. Your algorithm should repeatedly invoke ieege function starting with an
empty list, thereby running i@(n?) time for a list ofn elements.

. Write a predicateccur [a, s] toindicate whether an atomoccurs in a given s-expression

s, e.g.,occur[B, >((A B) . C)] =t.

. Write a functionnum_occur[a, s] that indicates how many times an atenoccurs in an

s-expressios, e.g.,num_occur[B, ’>((A B) . C)] =1.

. Write a functiomodups [s] to make a list without duplications of the atoms occurringun

s-expression, e.g.,nodups[’((A . B) . (C . A))] = (A B C).

. Write a functionmultiplicity[s] that indicates which atoms occur more than once in

an s-expressior. The result should be in the form of a list of pairs (i.e., anoaslist),
where each pair consists of the atom that occurs more tham amg its multiplicity, e.g.,
multiplicity[>((A . B) . (C . A))] = ((A . 2)).



9. Write a predicateulti_occur_sexpr[x, y] thatindicates whether or not an s-expression
x has more than one occurrence of an s-expresgias a sub-expression, e.gylti_-
occur_sexpr[’((A . B) . (C . (A . B))), (A . B)] =t.



