
Fall 2018 LISP Programming Project #1 CMSC 420
Hanan Samet

Program the following 13 functions in LISP. Make sure you test them thoroughly. Sample data
will be mailed to you. Turn in a listing of your program and theresults of applying the test data.

1. Given two sets of atomsx andy represented as lists, write functionsunion[x, y], intersection[x,
y] andset_difference[x, y], for their unionx∪y, intersectionx∩y, and set difference
u\y, respectively. Use the functionmember[n, x] defined below, which may also be written
asn ∈ x:

member(x, u) = if null u then nil

else if car u eq x then t

else member(x,cdr u)

For example,(A B C) ∪ (B C D) = (A B C D), (A B C) ∩ (B C D) = (B C), and(A B

C) \ (B C D) = (A).

Pay attention to getting correct the trivial (i.e., base) cases in which some of the arguments
arenil. In general, it is important to understand clearly the trivial cases of functions.

2. Given an integern and a listl of integers sorted in increasing order, write a functionmerge[n,

l] which insertsn in its proper place inl. For example,merge[3, ’(2 4)] = (2 3 4),
andmerge[3, ’(2 3)] = (2 3 3).

3. Given two sets of atomsx andy represented as ordered lists containing no duplicates, write
functionsounion[x, y], ointersection[x, y] andoset_difference[x, y] giving
the union, intersection, and set difference, respectively, of x andy; the result is wanted as an
ordered list.

Note that computing these functions of unordered lists takes a number of comparisons pro-
portional to the square of the number of elements of a typicallist, while for ordered lists, the
number of comparisons is proportional to the number of elements.

4. Usingmerge, write a function namedsort[l] that transforms an unordered listl into an
ordered list. Your algorithm should repeatedly invoke themerge function starting with an
empty list, thereby running inO(n2) time for a list ofn elements.

5. Write a predicateoccur[a, s] to indicate whether an atoma occurs in a given s-expression
s, e.g.,occur[B, ’((A B) . C)] = t.

6. Write a functionnum_occur[a, s] that indicates how many times an atoma occurs in an
s-expressions, e.g.,num_occur[B, ’((A B) . C)] = 1.

7. Write a functionnodups[s] to make a list without duplications of the atoms occurring inan
s-expressions, e.g.,nodups[’((A . B) . (C . A))] = (A B C).

8. Write a functionmultiplicity[s] that indicates which atoms occur more than once in
an s-expressions. The result should be in the form of a list of pairs (i.e., an assoc-list),
where each pair consists of the atom that occurs more than once and its multiplicity, e.g.,
multiplicity[’((A . B) . (C . A))] = ((A . 2)).

1



9. Write a predicatemulti_occur_sexpr[x, y] that indicates whether or not an s-expression
x has more than one occurrence of an s-expressiony as a sub-expression, e.g.,multi_-
occur_sexpr[’((A . B) . (C . (A . B))), (A . B)] = t.

2


