Program the following 13 functions in LISP. Make sure you test them thoroughly. Sample data will be mailed to you. Turn in a listing of your program and the results of applying the test data.

1. Given two sets of atoms \(x \) and \(y \) represented as lists, write functions \(\text{union}\[x, y\] \), \(\text{intersection}\[x, y\] \) and \(\text{set_difference}\[x, y\] \), for their union \(x \cup y \), intersection \(x \cap y \), and set difference \(u \setminus y \), respectively. Use the function \(\text{member}\[n, x\] \) defined below, which may also be written as \(n \in x \):

\[
\text{member}(x, u) = \begin{cases}
\text{nil} & \text{if null } u \\
\text{t} & \text{if } \text{car } u = x \\
\text{member}(x, \text{cdr } u) & \text{else}
\end{cases}
\]

For example, \((A \ B \ C) \cup (B \ C \ D) = (A \ B \ C \ D)\), \((A \ B \ C) \cap (B \ C \ D) = (B \ C)\), and \((A \ B \ C) \setminus (B \ C \ D) = (A)\).

Pay attention to getting correct the trivial (i.e., base) cases in which some of the arguments are \text{nil}. In general, it is important to understand clearly the trivial cases of functions.

2. Given an integer \(n \) and a list \(l \) of integers sorted in increasing order, write a function \(\text{merge}\[n, l\] \) which inserts \(n \) in its proper place in \(l \). For example, \(\text{merge}\[3, (2 \ 4)\] = (2 \ 3 \ 4)\), and \(\text{merge}\[3, (2 \ 3)\] = (2 \ 3 \ 3)\).

3. Given two sets of atoms \(x \) and \(y \) represented as ordered lists containing no duplicates, write functions \(\text{union}\[x, y\] \), \(\text{intersection}\[x, y\] \) and \(\text{set_difference}\[x, y\] \) giving the union, intersection, and set difference, respectively, of \(x \) and \(y \); the result is wanted as an ordered list.

Note that computing these functions of unordered lists takes a number of comparisons proportional to the square of the number of elements of a typical list, while for ordered lists, the number of comparisons is proportional to the number of elements.

4. Using \(\text{merge} \), write a function named \(\text{sort}\[l\] \) that transforms an unordered list \(l \) into an ordered list. Your algorithm should repeatedly invoke the \(\text{merge} \) function starting with an empty list, thereby running in \(O(n^2) \) time for a list of \(n \) elements.

5. Write a predicate \(\text{occur}\[a, s\] \) to indicate whether an atom \(a \) occurs in a given s-expression \(s \), e.g., \(\text{occur}\[B, '((A B) . C)] = \text{t} \).

6. Write a function \(\text{num_occur}\[a, s\] \) that indicates how many times an atom \(a \) occurs in an s-expression \(s \), e.g., \(\text{num_occur}\[B, '((A B) . C)] = 1 \).

7. Write a function \(\text{nodups}\[s\] \) to make a list without duplications of the atoms occurring in an s-expression \(s \), e.g., \(\text{nodups}['((A . B) . (C . A))] = (A \ B \ C) \).

8. Write a function \(\text{multiplicity}\[s\] \) that indicates which atoms occur more than once in an s-expression \(s \). The result should be in the form of a list of pairs (i.e., an assoc-list), where each pair consists of the atom that occurs more than once and its multiplicity, e.g., \(\text{multiplicity}['((A . B) . (C . A))] = ((A . 2)) \).
9. Write a predicate \texttt{multi_occur_sexpr}[x, y] that indicates whether or not an s-expression \(x\) has more than one occurrence of an s-expression \(y\) as a sub-expression, e.g., \texttt{multi_occur_sexpr[\'((A . B) . (C . (A . B))) , (A . B)]} = t.