
Fall 2008 A Short Reference Manual for LISP CMSC 420
Hanan Samet

This guide details a few important functions of FRANZ LISP and COMMON LISP.

Note, that all predefined (i.e., built-in) function and symbol names in FRANZ LISP are in lower
case. That includes nil and t. In COMMON LISP, however, they are defined in upper case. The
expression reader converts all symbols to upper case, so that you may use either upper or lower case
in your programs.

Intrinsic Functions

These are the functions which come predefined, and are available at sign-on to LISP. This is not a
complete list. Functions that are specific to FRANZ LISP are marked with [F], whereas functions
that are specific to COMMON LISP are marked with [C].

1 S-expression manipulation

(car arg) Returns the first element in list arg, or the left pointer of
an s-expression (cons node).

(cdr arg) Return the rest of list arg, or the right pointer of an s-
expression (cons node).

(cons a1 a2) Allocate and return a cons node that points to a1 and a2.
(list a1 a2 ...an ) Return a list of all the arguments.
(append a1 a2) Return the merge of the two lists a1 and a2.
(reverse arg) Reverses the list arg.
(subst new old sexp) Return a copy of sexp with all old’s converted to new’s.

2 S-expression predicates

(null arg) Return t if arg is nil; nil otherwise.
(atom arg) Return nil if arg is a cons node; t otherwise.
(eq a1 a2) Return t if a1 and a2 are the same pointer; nil otherwise.
(equal a1 a2) Return t if a1 and a2 have the same structure; nil other-

wise.
(member a list) Return the sublist of list beginning with the first oc-

curence of a; nil if not in list.

3 Logical functions

(or a1 a2 ...an) Return t if any argument is non-nil; nil otherwise.
(and a1 a2 ...an) Return t if all arguments are non-nil; nil otherwise.
(not arg) If arg is nil, returns t; else returns nil.

1



4 Control and program functions

(quote a) or ’a Return a unevaluated.
(cond
(exp1 a1 a2 ...an)
(exp2 b1 b2 ...bm)
...
(expn z1 z2 ...zk))

Evaluates all exp until one is non-nil, then evaluates all
expressions that follow and returns the result of the last.

(prog (v1 v2 ...vn)
label1 (s-expr1)
label2 (s-expr2)
...
labelm (s-exprm))

Acts like a sequential program with local variables v1 to
vn. Labels are optional for each line. If no return is en-
countered and control “drops off the end,” then nil is re-
turned.

(go arg) In a prog, branch control to s-expri preceded by label
arg.

(return arg) Only valid in a prog. Terminate prog and return the value
of arg.

5 I/O Functions

(read) Return as a value the next s-expression typed as input to
the terminal.

(readc) [F]
(read-char) [C]

Return next character as an atom.

(print arg) Print arg to output.
(patom arg) [F] Print arg to output. Differs from print in that the out-

put is a bit more readable, e.g., strings are not enclosed in
quotes.

(terpr) [F]
(terpri) [C]

Print a newline character.

(pp arg) [F] Print the definition of the symbol arg. If arg is a function,
then its binding is pretty printed. pp can take multiple
arguments.

(symbol-function atom) [C] Print the function definition of the function bound to atom.
(cprintf format args) [F] Analogous to the C language version.
(load filename) Read in the file filename and evaluates all expressions

in it, including function definitions. Values of expressions
are not displayed.

(include filename) [F] Same as load, except that the argument is not evaluated,
so it shouldn’t be quoted.

2



6 Arithmetic Functions

(numberp n) Return t if n is a number; nil otherwise.
(zerop n) Return t it n is zero; nil otherwise.
(> n1 n2) or
(greaterp n1 n2) [F]

Return t if n1 is greater than n2.

(< n1 n2) or
(lessp n1 n2) [F]

Return t if n1 is less than n2.

(+ n1 n2 ...nn) or
(plus n1 n2 ...nn) [F]

Return the sum of all arguments.

(* n1 n2 ...nn) or
(times n1 n2 ...nn) [F]

Return the product of all arguments.

(- n1 n2) or
(difference n1 n2) [F]

Return the quantity n1 minus n2.

(/ n1 n2) or
(quotient n1 n2) [F]

Return n1 divided by n2.

(1+ x) or (add1 x) [F] Return x + 1.
(1- x) or (sub1 x) [F] Return x - 1.

7 Function Definition and Value Assignment

(setq x y) Set x to the value of y. setq allows any number of x-y
pairs.

(set x y) Like setq, except that x is evaluated to get an atom.
(lambda arglist body) Return a nameless function with argument list arglist

and body body. The body should be a list of expression,
with the value of the last one being the value of the func-
tion.

(defun name arglist
body)

Define a function with name name. Equivalent to (setq
name (lambda arglist body)).

(defun name fexpr
(arg) body) [F]

(defun.fexpr name
(arg) body) [C]

Define a function where upon invocation, the argument list
is not evaluated, but passed instead as the binding of the
only parameter arg (not a built-in function in COMMON

LISP).

3



8 Atom Manipulation

(gensym arg) Create atom with name argnnnnn, where arg is an atom
and nnnnn is the number of times gensym has been called.
(gensym ’x) returns x00000.

(putprop atom value
label) [F]
(setf (get atom label)
value) [C]

Set the value of the property label of atom’s property list
to value.

(get atom label) Return the value of property label on the property list of
atom.

(remprop atom label) Remove the property label from the property list of
atom.

(plist atom) [F]
(symbol-plist atom) [C]

Return the property list of atom in the form (p1 v1 p2
v2 ... pn vn), where pi is a property with value vi.

(setplist atom list) [F]
(setf (symbol-plist atom)
list) [C]

Set the property list of atom to list, which must be a list
of the form (p1 v1 p2 v2 ... pn vn).

9 Other useful functions

(implode list) [F] Return the atom created by concatenating the first charac-
ter of all the atoms in list.

(explode atom) [F] Return the list of the atom’s characters (reverse of
implode).

(concat-symbols symbol1
symbol2) [C]

Return a symbol with a name that is a concatenation of the
names of symbol1 and symbol2 (not a built-in function).

(nth number list) Return the element of list with index number, assuming
zero-based indexing.

(nthcdr number list) Return the result of applying cdr to the list number
times.

(length list) Return the number of elements in the top level of list.
(trace fname ...) Turn on function tracing for function fname. Trace can

take multiple arguments. A list of all functions being
traced is returned.

(untrace fname ...) Turn off tracing for the named functions.
(help) On-line help. help can take an argument, e.g., a function

name.
(vi filename) [F] Invoke the vi editor on the file filename.
(vil filename) [F] Same as vi, except that load is executed on the file after

vi is exited.

10 More hints

In order to invoke the emacs editor instead of vi in FRANZ LISP, use the following functions em and
eml instead of vi and vil, respectively:

4



(defun em fexpr (x) (exvi ’emacs x nil))
(defun eml fexpr (x) (exvi ’emacs x t))

To save the output of your program into a file, you can use the UNIX command script. To use
it, first execute script, then produce the output you want to save, and, finally, execute exit in the
shell. At that point, the output will be in the file typescript, which you can then edit and print.

The COMMON LISP functions defun.fexpr and concat-symbols that were mentioned above
are not a built-in functions. Their definition follows. The functions trace.fexpr and untrace.fexpr
are used to trace and untrace fexpr functions.

(defmacro defun.fexpr (funname varlist &rest expr)
(let ((ffunname (concat-symbols funname ’.fexpr)))
‘(progn
(defun ,ffunname ,varlist ,@expr)
(defmacro ,funname (&body args)
(list ’,ffunname (list ’quote args))))))

(defun fexprlist (el)
(if (null el) nil
(cons (concat-symbols (car el) ’.fexpr)

(fexprlist (cdr el)))))

(defmacro trace.fexpr (&body funname)
(cons ’trace (fexprlist funname)))

(defmacro untrace.fexpr (&body funname)
(cons ’untrace (fexprlist funname)))

(defun concat-symbols (sym1 sym2)
(intern (concatenate ’string (string sym1) (string sym2))))

5


