Fall 2018 CMSC 420
Hanan Samet

Programming Assignment 1.
A Data Structure For VLS| Applications!

Abstract

In this assignment you are required to implement an infoilgnananagement system for
handling data similar to that used in VLSI (very large scakegration) as well as game pro-
gramming applications. In such an environment the primatities are small rectangles and
the problem in which we are interested is how to manage a leatiection of them. In the
following we trace the development of a variant of the queeltlata structure that has been
found to be useful for such a problem. Your task is to implentleis data structure in such a
way that a number of operations can be efficiently handledexample JAVA applet for the
data structure can be found on the home page of the class.

This assignment is divided into four parts. C, C++, or PASGke the permitted program-
ming languages. JAVA is not permitted. Also, you are notwadid to make use of any built in
data structures from any library such as, but not limitef.,. in C++. For the first two parts,
you must read the attached description of the problem ardstiatcture. A detailed explanation
of the assignment including the specification of the openativhich you are to implement is
found at the end of the description. After you have done tfus,are to turn in a proposed im-
plementation of the data structure using C++ classes, Ctstror PASCAL record definitions.
One week later you must turn in a C++, C, or PASCAL programtierdcommand decoder (i.e.,
scanner for the commands corresponding to the operatioithwbhe to be performed on the
data structure). For the third part, you are to write a C+4QrBASCAL program to implement
the data structure and operations (1)-(9). For the fourth pau are to implement operations
(10)—(14). Operations (15)—(18) are optional and you well gxtra credit if you turn them in
with part four. If you are a graduate student, part four isopitonal.

LCopyright ©2018 by Hanan Samet. No part of this document may be reprddstered in a retrieval system, or
transmitted, in any form or by any means, electronic, meicadnphotocopying, recording, or otherwise, without the
express prior permission of the author.

1 Region-Based Quadtrees

The quadtree is a member of a class of hierarchical datatstescthat are based on the principle
of recursive decompaosition. As an example, consider thetppiadtree of Finkel and Bentley [2]
which should be familiar to you as it is simply a multidimensal generalization of a binary search
tree. In two dimensions each node has four subtrees conmeéspto the directionsw, NE, SW, and

SE. Each subtree is commonly referred to as a quadrant or sdiapta For example, see Figure
1.14 where a point quadtree of 8 nodes is presented. In our peggEntve shall only discuss
two-dimensional quadtrees although it should be cleanthat we say can be easily generalized to
more than two dimensions. For the point quadtree the poime@omposition are the data points
themselves (i.e., in Figure 1.14, Chicago at location (@bstibdivides the two dimensional space
into four rectangular regions). Requiring the regions t@bequal size leads to the region quadtree
of Klinger [6, 8, 7]. This data structure was developed f@resenting homogeneous spatial data
and is used in computer graphics, image processing, gdugehpnformation systems, pattern
recognition, and other applications. For a history andess\of the quadtree representation, see pp.
28-48 and 423-426 in [9].

As an example of the region quadtree, consider the regionrsioFigure 1.28a which is rep-
resented by a®x 22 binary array in Figure 1.28b. Observe that 1's corresporpidinre elements
(termed pixels) which are in the region and Q’s correspongidture elements that are outside the
region. The region quadtree representation is based onutlvessive subdivision of the array into
four equal-size quadrants. If the array does not consisegnof 1's or O's (i.e., the region does not
cover the entire array), then we subdivide it into quadrasibquadrants, ... until we obtain blocks
(possibly single pixels) that consist entirely of 1's oriegly of 0’'s. For example, the resulting
blocks for the region of Figure 1.28b are shown in Figure d.ZBhis process is represented by a
guadtree in which the root node corresponds to the entiag,atre four sons of the root node repre-
sent the quadrants, and the leaf nodes correspond to trades tbbr which no further subdivision is
necessary. Leaf nodes are said to be BLACK or WHITE depenaliinghether their corresponding
blocks are entirely within or outside of the region respedji. All non-leaf nodes are said to be
GRAY. The region quadtree for Figure 1.28c is shown in Figug8d.

2 MX Quadtrees

There are a number of ways of adapting the region quadtrezptesent point data. If the domain
of data points is discrete, then we can treat data pointsthagyfwere BLACK pixels in a region
gquadtree. An alternative characterization is to treat #ta goints as non-zero elements in a square
matrix. We shall use this characterization in the subsegiisoussion. To avoid confusion with the
point and region quadtrees, we call the resulting datatstre@nMX quadtree (MX for matrix).

The MX quadtree is organized in a similar way to the regiordiygee. The difference is that leaf
nodes are BLACK or empty (i.e., WHITE) corresponding to thesgnce or absence, respectively,
of a data point in the appropriate position in the matrix. &le, Figure 1.29 is thé & 2° MX
guadtree corresponding to the data of Figure 1.1. It is nbthby applying the mappinfjsuch that
f(z) = z+ 125 to bothx andy coordinates. The result of the mapping is reflected in thedioate
values in the figure.

Each data point in an MX quadtree corresponds to<dllsquare. For ease of notation and op-
eration using modulo and integer division operations, tite goint is associated with the lower left

2All numbered figures and page numbers refer to [9].

corner of the square. This adheres to the general convelationved throughout this presentation
that the lower and left boundaries of each block are closeitewine upper and right boundaries
of each block are open. We also assume that the lower lefecofithe matrix is located at (0,0).

Note that, unlike the region quadtree, when a non-leaf nndke MX quadtree has four BLACK

sons, they are not merged. This is natural since a mergerchfrsades would lead to a loss of the
identifying information about the data points, as each datat is different. On the other hand, the
empty leaf nodes have the absence of information as theimmmproperty; so, four WHITE sons

of a non-leaf node can be safely merged.

Quadtrees are especially attractive in applications thailve search. A typical query is one
that requests the determination of all nodes within a sgekdistance of a given data point—e.g.,
all cities within 50 miles of Washington, D.C. The efficiengfyquadtree-like data structures lies in
their role as a pruning device on the amount of search thatjsired. Thus, many records will not
need to be examined.

As an example we use the point quadtree of Figure 1.14 althdlwg extension to an MX
guadtree is straightforward. Suppose that we wish to finaiifls within eight units of a data
point with coordinate values (83,10). In such a case, themineed to search th@, NE, andSw
guadrants of the root (i.e., Chicago with coordinate va{88s40)). Thus, we can restrict our search
to theSE quadrant of the tree rooted at Chicago. Similarly, thereigeed to search the andSw
guadrants of the tree rooted at Mobile (i.e., coordinataes(50,10)).

As a further clarification of the amount of pruning of the s#espace that is achievable by use
of the point quadtree, we make use of Figure 1.27. In pas#ticgjfiven the problem of finding all
nodes within radius r of point A, use of the figure indicatesollguadrants need not be examined
when the root of the search space, say R, is in one of the naahlbegions. For example, if Ris in
region 9, then all but it§W quadrants must be searched. If R is in region 7, then thelsearcbe
restricted to thélw andNE quadrants of R. For more details on MX quadtrees, see pp.238—4

3 MX-CIF Quadtrees

The MX-CIF quadtree is a quadtree-like data structure devised by Kedem [5] (wdamluhe term
guad-CIF tree) for representing a large set of very small rectangles fotiegtion in VLSI design
rule checking. The goal is to rapidly locate a collection bjeats that intersect a given rectangle.
An equivalent problem is to insert a rectangle into the datecgire under the restriction that it does
not intersect existing rectangles.

The MX-CIF quadtree is organized in a similar way to the ragimadtree. A region is re-
peatedly subdivided into four equal-size quadrants unéilaktain blocks which do not contain
rectangles. As the subdivision takes place, we associgtteeach subdivision point a set containing
all of the rectangles that intersect the lines passing ttratt For example, Figure 3.23 contains
a set of rectangles and its corresponding MX-CIF quadtregce@ rectangle is associated with a
guadtree node, sd&, it is not considered to be a member of any of the sorB. dfor example, in
Figure 3.23, rectangle 11 overlaps the space spanned bywbdds D and F but is only associated
with node D, while rectangle 12 is associated with node F.

At this point, itis also appropriate to comment on the relaghip between the MX-CIF quadtree
and the MX quadtree. The similarity is that the MX quadtreddafined for a domain of points with
corresponding nodes that are the smallest blocks in whaghdle contained. Similarly, the domain
of the MX-CIF quadtree consists of rectangles with corresiiag nodes that are the smallest blocks
in which they are contained. In both cases, there is a predited limit on the level of decomposi-

tion. One major difference is that in the MX-CIF quadtredjkathe MX quadtree, all nodes are of
the same type. Thus, data is associated with both leaf ardeabnodes of the MX-CIF quadtree.
Empty nodes in the MX-CIF quadtree are analogous to WHITEeead the MX quadtree. An

empty node is like an empty son and is represented by a NILtgyoim the direction of a quadrant
that contains no rectangles. For more details on MX-CIF tjead, see pp. 466—473 in [9].

It should be clear that more than one rectangle can be at=sweigth a given enclosing block
(i.e., node). There are several ways of organizing thesangles. Abel and Smith [1] do not apply
any ordering. This is equivalent to maintaining a linked @itthe rectangles. Another approach,
devised by Kedem [5], is described below.

Let P be a quadtree node and &be the set of rectangles that are associatedvitiembers of
Sare organized into two subsets according to their intei@e¢br the colinearity of their sides) with
the lines passing through the centroidRs block. We shall use the ternases or axis linesto refer
to these lines. For example, consider n&dehose block is of size A.X x 2-LY and is centered
at (CX,CY). All members ofS that intersect the ling = CX form one subset and all members of
Sthat intersect the ling = CY form the other subset. Equivalently, these subsets camesip
the rectangles intersecting tlgeandx axes, respectively, passing througEX(CY). If a rectangle
intersects both axes (i.e., it contains the centroif’stlock), then we adopt the convention that it
is stored with the subset associated withytreexis.

These subsets are implemented as binary trees, which ialiactare one-dimensional analogs
of the MX-CIF quadtree. Thus rectangles are associatedtihminimum enclosing one-dimensional
xoryintervals as is appropriate. For example, Figure 3.24tittiss the binary trees associated with
thex andy axes passing through A, the root of the MX-CIF quadtree ofife.23. The subdivision
points of the axis lines are shown by the tick marks in Figug33

Insertion and deletion of rectangles in an MX-CIF quadtrez gescribed on pp. 468-469
in [9] and in the solutions to the exercises on pp. 827-83®jnThe most common search query
is one that seeks to determine if a given rectangle overlaps intersects) any of the existing
rectangles. This operation is a prerequisite to the suftdessertion of a rectangle. Range queries
can also be performed. However, they are more usefully nastins of finding all the rectangles
in a given area (i.e., a window query). Another popular qusrgne that seeks to determine if
one collection of rectangles can be overlaid on anotheectidin without any of the component
rectangles intersecting one another.

The range and overlay operations can be implemented by uaitants of algorithms developed
for handling set operations (i.e., union and intersectionmegion-based quadtrees [4, 10]. In par-
ticular, the range query is answered by intersecting theyqeetangle with the MX-CIF quadtree.
The overlay query is answered by a two-step process. Fitstsect the two MX-CIF quadtrees. If
the result is empty, then they can be safely overlaid and welgnaeed to perform a union of the
two MX-CIF quadtrees. It should be clear that Boolean gqueran be easily handled. An example
JAVA applet for the MX-CIF quadtree data structure can bentban the home page of the class.

4 Assignment

This assignment has four parts. It is to be programmed in C+er PASCAL. JAVA is not permit-
ted. You are not allowed to make use of any built in data stirestfrom any library such as, but not
limited to, STL in C++. The first part is concerned with dataisture selection. The second part
requires the construction of a command decoder. The tholdaurth parts require that you imple-
ment a given set of operations. You are strongly urged to tleadhe description of the MX-CIF

3

quadtree [9].

The first part is to be turned in one week after this assigniastbeen distributed to you. It is
worth 10 points. The second part is also worth 10 points. tih ise turned in two weeks after this
assignment has been distributed to you. There will be NOdlalienissions accepted for these two
parts of the assignment. While doing parts one and two yoalaceto start thinking and coding the
program necessary to implement the operations. This sHmuldone in such a way that the data
structure is a BLACK BOX. Thus you need to specify your primas in such a way that they are
independent of the data structure finally chosen. You aomgly advised to begin implementing
some of the operations. For example, you should implemepugput routine so that you can see
whether your program is working properly. This will be dorging a set of drawing programs that
we will provide for which you will be provided separate docemtation.

For the third and fourth parts of the assignment, you are itever C++ (or C or PASCAL)
program to implement the data structure and the specifiechtipes. Together they are worth 60
points. Part three consists of operations (1)—(9) givenvkellThey are worth a total of 30 points,
with varying point values for the different operations. tHaur consists of operations (10)—(14)
given below. They are worth 30 points. Operations (15)—@®) for extra credit and are to be
turned in with part four. They are worth up to 3 points apiece.

In order to facilitate grading and your task, you are to ugedata structure implementation
that will be given to you in class on the first meeting dateraft turn in the first two parts of the
assignment. For any operation that is not implementedpBayour command decoder must output
a message of the form‘ COMMAND OP IS NOT IMPLEMENTED’’.

We will assume that rectangles do not overlap although the®liX quadtree data structure can
deal with such a situation. In order to lend some realism tar yask you are to implement the
MX-CIF quadtree in a raster-based graphics environmenis fieans that you are dealing with a
world of pixels. The size of the world can be varied, and in case is a2 x 2V array of pixels
such that each pixel corresponds to a square of sizd.1Each pixel is referenced by thxeand
y coordinate values of its lower-left corner. Therefore, ltheer-left corner of the array (i.e., the
origin) has coordinate values (0,0), and the pixel at theetipight corner of the array has coordinate
values (2 — 1,2V —1). As a default, we assume= 7, i.e., a pixel array of size 128128. All
rectangles are of sizex j, where 3<i < 2% and 3< j < 2%, In other words, the smallest rectangle
is of size 3 by 3 and the largest i¥ 2 2V. Note that the X 1 pixel is the smallest unit into which
our MX-CIF quadtree will decompose the underlying spacefwehich the rectangles are drawn.

In order to simplify the project and for optional operatidiT) to be meaningful (i.eLABEL for
connected component labeling), we stipulate that the arlstiand the distances from the centroids
to the borders of the rectangles are integers. Therefdreeahngles are of sizei 2 2j, where
1<i<2¥%1andi< j < 2%-1"In other words, the smallest rectangle is of size 2 by 2 ard th
largest is 2 x 2". As we pointed out, the rectangles are specified bythedy coordinate values
of their centroids, and the horizontal and vertical distsnitom the centroids to their corresponding
sides. The representation is further simplified by assurtiiagjthe centroids of the rectangles are
lower-left corners of pixels. In order to see this, consitherrectangle specification havi@x = 3,
CY=2,LX =1, andLY = 2 as shown in Figure A. It corresponds to a rectangle of size 2vith
diagonally opposite corners at (2,0) and (3,3)—that issehare the pixels for which these points
serve as the lower-left corners. Thus we see that this rgletas 2 pixels wide and 4 pixels high
and has an area of 8 pixels The centroid of this rectangle(& 2% which is the lower-left corner of
the corresponding pixel.

One class meeting date before the due date of each part ofdjeetpyou will be informed of

o
X

Figure A: Sample rectangle with at pixel boundaries having a centroid at (3,2) whose
distance to its horizontal and vertical boundaries is 1 and 2, respectively.

the availability of and name of the test data file which youtanese in exercising your program for
grading purposes. You should also prepare your own test dasample file for this purpose will
also be provided.

4,1 Data Structure Selection

You are to select a data structure to implement the MX-CIFdttea. Turn in a definition in the
form of a set of C++ classes, C structs, or PASCAL record dafims. Again, you are not allowed to
make use of any built in data structures from any library sag;hout not limited to, STL in C++. In
doing this part of the assignment you should bear in mindythe of data that is being represented
and the type of operations that will be performed on it. Ineoreb ease your task, remember that
the primitive entity is the rectangle. We specify a rectartgy giving thex andy coordinate values
of its centroid, and the horizontal and vertical distancemfthe centroid to its borders. The rest of
your task is to build on this entity adding any other inforioatthat is necessary. The nature of the
operations is described in Sections 4.3-4.5.

From the description of the operations you will see that asmerassociated with each rectangle.
Each rectangle is assigned a uniqgue name. At times, thetaperare specified in terms of these
names. Thus you will also need a mechanism (i.e., a datawtejdo efficiently keep track of the
names of the rectangles (i.e., to enable their retrievalatgs, etc.). It should be integrated with the
data structure that keeps track of the geometry of the rgldan

4.2 Command Decoder

You are to turn in a working command decoder written in C++y@ASCAL for all the commands
(including the optional ones) given in Sections 4.3—4.5u ¥ee not expected to do error recovery
and can assume that the commands are syntactically col#éatommands will fit on one line.
Lengths of names are restricted to 6 characters or less antbecany combination of letters or
digits (e.g.,A, 1, 24, B33, etc.). However, for your own safety you may wish to incogiersome
primitive error handling. Test data for this part of the gasnent will be found in a file specified by
the Teaching Assistant.

The output for the command decoder consists of the numbéedigeration (e.g., “1” for com-
mandINIT_QUADTREE) and the actual values of the parameters if the command lygzsaameters

5

(e.g., the value o IDTH for the INIT_QUADTREE command).

4.3 Part Three: Basic Operations

In order to facilitate grading of these operations as wethasadvanced and optional operations in
Sections 4.4 and 4.5, respectively, please provide a traipripof the execution of the operations
which lists the nodes (both leaf and nonleaf) that have bested while executing the operation.
This trace is initiated by the commam#&ACE ON and is terminated by the commamBACE OFF.

In order for the trace output to be concise, you are to reptessch node of the MX-CIF quadtree
that has been visited by a unique number which is formed &siel The root of the quadtree is
assigned the number 0. Given a node with nunmYbeits NW, NE, SW ,andSE children are labeled
4-N+1,4N+2,4-N+3, and 4N +4, respectively. For example, starting at the root Miaehild

is numbered 2, while thek child of theNw child of the root is numbered 4*(4*0+1)+4=8. Since
we also want to keep track of the nodes of the binary treeegponding to the one-dimensional
MX-CIF quadtrees that have been visited, we need to be aldsdign unique numbers to them as
well. The root of the binary tree is assigned the number Oea node with numbeM, its LEFT
andRIGHT children are labeled-N + 1 and 2N + 2, respectively. For example, starting at the root,
theright child is numbered 2, while theEFT child of theRIGHT child of the root is numbered
2*(2*0+2)+1=5. In order to distinguish between nodes inlieary trees associated with thend

y axes of the MX-CIF quadtree, we append the character ‘X’ &fidréspectively to the number.
The presence of this additional character also serves tioglissh between nodes of the quadtree
and those of the binary trees.

(1) (1 point) Initialize the quadtree. The commaIMIT_QUADTREE (WIDTH) is always the first
command in the input strearWIDTH determines the length of each side of the square are covered
by the quadtree. Each side has the lend®i™. It also has the effect of starting with a fresh data
set.

(2) (1 point) Generate a display of &2™ x 2"IPTH square from the MX-CIF quadtree. It is invoked
by the comman®ISPLAY (). To draw the MX-CIF quadtree, you are to use the drawing nesti
provide. In particular, we provide you with an handout thesatibes their use, and the working
of utilities SHOWQUAD andPRINTQUAD, that can be used to render the output of your programs on a
screen or a printer. A dashed (broken) line should be userhi® quadrant lines, but the rectangles
should be solid (i.e., not dashed). Rectangle names sheutdifput somewhere near the rectangle
or within the rectangle. Along with the name of a rectariglgou should also print the node-number
of the node containing. When this convention causes the output of a quadrant lineiteide with

the output of the boundary of a rectangle, then the outputefaéctangle takes precedence and the
coincident part of the quadrant line is not output.

(3) (3 points) List the names of all of the rectangles in the@blase in lexicographical order. This
means that letters come before digits in the collating secgie Similarly, shorter identifiers pre-
cede longer ones. For example, a sorted ligt, isB, A3D, 3DA, 5. It is invoked by the command
LIST_RECTANGLES() and yields for each rectangle its name, #hendy coordinate values of its
centroid, and the horizontal and vertical distances toadtslérs from the centroid. This is of use
in interpreting the display since sometimes it is not pdssib distinguish the boundaries of the
rectangles from the display. You should list all of the raglas in the database whether or not they
have been deleted.

(4) (1 point) Create a rectangle by specifying the coordinalues of its centroid and the distances
from the centroid to its borders, and assign it a name forexylEnt use. It is invoked by the

commandCREATE _RECTANGLE(N,CX,CY,LX,LY) whereN is the name to be associated with the
rectangle,CX and CY are thex andy coordinate values, respectively, of its centroid, axdand

LY are the horizontal and vertical distances, respectiveljtstborders from the centroicX, CY,

LX, andLY are integer numbers (although it could also be a real nunmbinei more general case).
However, as we pointed out earlier, in the case of this asségm, in order for the optional operation
(17) (i.e.,LABEL for connected component labeling) to be meaningful, rdoath the introduction

to Section 4 that we stipulate that the centroids and thamtists from the centroids to the borders
of the rectangles are integers. Output an appropriate mes$sdicating that the rectangle has been
created as well as its name and ¥@ndy coordinate values of its centroid, and the horizontal and
vertical distances to its borders from the centroid. No&t #ny rectangle can be created — even if
it is outside the space spanned by the MX-CIF quadtree.

(5) (4 points) Given a point, return the name of the rectatigge contains it. It is invoked by the
commandEARCH_POINT (PX,PY) wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists, then output a ngesgadicating that the point is not
contained in any of the rectangles.

(6) (5 points) Determine whether a query rectangle intéssée., overlaps) any of the existing
rectangles. This operation is a prerequisite to the suftdéssertion of a rectangle in the MX-CIF
guadtree. It is invoked by the commaRHCTANGLE_SEARCH (N) whereN is a name of a rectangle.
If the rectangle does not intersect an existing rectangEnRECTANGLE_SEARCH returns a value
of false and outputs an appropriate message suchH ¥DOES NOT INTERSECT AN EXISTING
RECTANGLE’ ’. Otherwise, it returns the value true and uses the nameiat=bavith one of the in-
tersecting rectangles (i.e., if it intersects more thanrestangle) to output one of the following two
messages: ‘N INTERSECTS RECTANGLE [NAME OF RECTANGLE]’’. Note that if an endpoint of
the query rectangle touches the endpoint of an existingmgét, therRECTANGLE_SEARCH returns
false. You are only to check against the rectangles thatratkel MX-CIF quadtree of existing
rectangles, and not the rectangles that existed at somértithe past and have been deleted by the
time this command is executed (i.e., in the database ofirglds).

(7) (5 points) Insert a rectangle in the MX-CIF quadtreeh# tectangle intersects an existing rect-
angle, then do not make the insertion and report this facetyrming the name of the intersecting
rectangle. Also, if any part of the rectangle is outside tgce spanned by the MX-CIF quadtree,
then do not make the insertion and report this fact by a deitatessage such a¥SERTION OF
RECTANGLE N FAILED AS N LIES PARTIALLY OUTSIDE SPACE SPANNED BY MX-CIF QUADTREE.
Otherwise, return the name of the rectangle that is beirgytied as well as output a message indi-
cating that this has been done. It is invoked by the comnIaiSERT (N) whereN is the name of a
rectangle. It should be clear that the MX-CIF quadtree ik byia sequence @fREATE_RECTANGLE
andINSERT operations.

Please note/recall our previously stated convention tiegliowwer and left boundaries of each rectan-
gle and block are closed while the upper and right boundafieach block are open. For example,
this means that when trying to insert rectanglence we have determined the minimum enclosing
quadtree block of r, we then check if the left and/or bottom sides @fre coincident with the top
and/or right sides ob. If this is true, then associatewith the parent quadtree bloakof b. In
particular,r is associated with one of the binary treescdthese binary trees are one-dimensional
MX-CIF quadtrees in the parlance of the book and the assigtym@therwiser is associated with

b.

(8) (6 points) Delete a rectangle or a set of rectangles flanMX-CIF quadtree. This operation has
two variants,DELETE_RECTANGLE and DELETE_POINT. The comman®ELETE_RECTANGLE (N)

deletes the rectangle namgdIt returnsN if it was successful in deleting the specified rectangle
and outputs a message indicating it. Otherwise, it outpu@pgropriate message. The command
DELETE_POINT(PX,PY) has as its argument a point within the rectangle to be delebedex and

y coordinate values are given X andPY, respectively.DELETE_POINT returns as its value the
name of the rectangle that has been deleted and prints aopaigie message indicating its name.
If the point is not in any rectangle, then an appropriate mgssndicating this is output. The code
for DELETE_POINT should make use (fEARCH_POINT. Note that rectangl# is only deleted from
the MX-CIF quadtree and not from the database of rectangles.

(9) (4 points) Move a rectangle in the MX-CIF quadtree. Thaowand is invoked bYOVE (N, CX,CY)
whereN is the name of the rectanglex, CY are the translation of the centroid Wfacross thex
andy coordinate axes, and they must be integers The commanasétuf it was successful in
moving the specified rectangle and outputs a message imgjagat Otherwise, output appropriate
error messages if was not found in the MX-CIF quadtree, or if after the opemafidies outside
the space spanned by the MX-CIF quadtree. Note that the ssfot@xecution of the operation
requires that the moved rectangle does not overlap any aixiséing rectangles in which case an
appropriate error message is emitted.

4.4 Part Four: Advanced Operations

(10) (6 points) Determine all the rectangles in the MX-ClFaduee that touch (i.e., are adja-
cent along a side or a corner) a given rectangle. This operasi invoked by the command
TOUCH(N) whereN is the name of a rectangle. Since rectantilés referenced by namey
thus must be in the database for the operation to work but et memt necessarily be in the
MX-CIF quadtree. The command returns the names of all thehid rectangles in conjunc-
tion with the following messagé ‘N SHARES ENDPOINT [X AND Y COORDINATE VALUES OF
ENDPOINT] WITH THE RECTANGLES [NAME OF RECTANGLES]’’. Otherwise, the command re-
turnsNIL. For each rectanglethat touchesi, display (i.e., highlight) the point in for which the

x andy coordinate values are minimum (i.e., the lower-leftmosheo). It should be clear that the
intersection of with N is empty.

(11) (6 points) Determine all of the rectangles in the MX-@&adtree that lie within a given
distance of a given rectangle. This is the so-called ‘larhprdzblem. Given a distance (an integer
here although it could also be a real number in the more gecesa), it is invoked by the command
WITHIN(N,D) whereN is the name of the query rectangle. In essence, this operediostructs a
guery rectangl€ with the same centroid asand distance&X+D andLY+D to the border. Now,
the query returns the identity of all rectangles whose sdetion with the region formed by the
difference of andN is not empty (i.e,, any rectangiethat has at least one point in common with
Q-N). In other words, we have a shell of widbharoundN and we want all the rectangles that have
a point in common with this shell. Rectangieneed not necessarily be in the MX-CIF quadtree.
Note that for this operation you must recursively travergettee to find the rectangles that overlap
the query region. You will NOT be given credit for a solutidrat uses neighbor finding, such as
one (but not limited to) that starts at the centroidiand finds its neighbors in increasing order of
distance. This is the basis of another operation.

(12) (6 points) Find the nearest neighboring rectangle ehhbrizontal and vertical directions,
respectively, to a given rectangle. To locate a horizon&gjimoor, use the commaritbRIZ_-
NEIGHBOR (N) whereN is the name of the query rectangiERT_NEIGHBOR (N) locates a vertical
neighbor. By “nearest” horizontal (vertical) neighboriregtangle, it is meant the rectangle whose
vertical (horizontal) side, or extension, is closest to dieal (horizontal) side of the query rectan-

8

gle. If the vertical (horizontal) extension of a side of eewjler causes the extended sideratfo
intersect the query rectangle, theis deemed to be at distance 0 and is thus not a candidate neigh-
bor. In other words, the distance has to be greater than Zém®.commands return as their value
the name of the neighboring rectangle if one exists ¥rid otherwise as well as an appropriate
message. Rectangieneed not necessarily be in the MX-CIF quadtree. If more thanrectangle

is at the same distance, then return the name of just oneof the

(13) (6 points) Given a point, return the name of the neamsngle. By “nearest,” it is meant
the rectangle whose side or corner is closest to the pointe Mat this rectangle could also be a
rectangle that contains the point. In this case, the distaeero. It is invoked by the command
NEAREST_RECTANGLE (PX,PY) wherePX andPY are thex andy coordinate values, respectively,
of the point. If no such rectangle exists (e.g., when the isaampty), then output an appropriate
message (i.e., that the tree is empty). If more than onengletas at the same distance, then return
the name of just one of them.

(14) (6 points) Find all rectangles in a rectangular windowhered at a given point. It is invoked
by the commandINDOW (LLX,LLY,LX,LY) whereLLX andLLY are thex andy coordinate values,
respectively, of the lower left corner of the window akxiandLY are the horizontal and vertical
distances, respectively, to its borders from the cornerurYatput is a list of the names of the
rectangles that are completely inside the window, and dajispf the MX-CIF quadtree that only
shows the rectangles that are in the window. This is simdaa clipping operation. Draw the
boundary of the window using a dashed rectangle. Do not shagrgnt lines within the window.
All arguments tdWINDOW are integers (i.eLX, LY LLX, andLLY). Note that for this operation you
must recursively traverse the tree to find the rectangldsotfalap the query region. You will NOT
be given credit for a solution that uses neighbor findinghsagcone (but not limited to) that starts at
the centroid of the window and finds its neighbors in incnegsirder of distance. This is the basis
of another operation.

4.5 Optional Operations

(15) (3 points) Find the nearest neighbor in all directiamthe boundary of a given rectangle. It is
invoked by the commangEAREST _NEIGHBOR (N) whereN is the name of a rectangle. By “nearest,”
it is meant the rectangl€ with a point on its side or corner, s&; such that the distance from

to a side or corner of the query rectangle is a minimWMAREST _NEIGHBOR returns as its value
the name of the neighboring rectangle if one exists ¥rid otherwise as well as an appropriate
message. Rectandgieneed not necessarily be in the MX-CIF quadtree. If more thenrectangle
is at the same distance, then return the name of just onerof tNete that rectangles that are inside
N are not considered by this query.

(16) (3 points) Given a rectangle, find its nearest neighbitih & name that is lexicographically
greater. It is invoked by the comman&XICALLY_GREATER_NEAREST_NEIGHBOR(N) whereN is
the name of a rectangle. By “lexicographically greater esdrit is meant the rectanglé whose
name is lexicographically greater than thatafith a point onC’s side, sayP, such that the distance
from P to a side of the query rectangle is a minimUutEXICALLY_GREATER_NEAREST_NEIGHBOR
returns as its value the name of the neighboring rectangleafexists andIL otherwise as well as
an appropriate message. Rectangteeed not necessarily be in the MX-CIF quadtree. If more than
one rectangle is at the same distance, then return the najons ohe of them. Note that rectangles
that are insideN are not considered by this query. This operation should xamée more than
the minimum number of rectangles that are necessary tondieterthe lexicographically greater
nearest neighbor. Thus you should use an incremental nesighbor algorithm (e.g., [3] which

9

is described on pages 490-501 in [9]).

(17) (3 points) Perform connected component labeling orMieCIF quadtree. This means that
all touching rectangles are assigned the same label. Bghing,” it is meant that the rectangles
are adjacent along a side or a corner. This is accomplisheédebgommand.ABEL (). The result
of the operation is a display of the MX-CIF quadtree wheregalthing rectangles are shown with
the same label. Use integer labels.

(18) (3 points) Given a pair of MX-CIF quadtrees, find the paif intersecting rectangles. This is
accomplished by the commaS®ATIAL_JOIN. The result of the operation is a list of all pairs of
intersecting rectangles of the for(A,B) where A andB are pairs of intersecting rectangles, one
from the first set and one from the second set, respectively.

References

[1] D. J. Abel and J. L. Smith. A data structure and algoritheisdd on a linear key for a rectangle
retrieval problem Computer Vision, Graphics, and Image Processing, 24(1):1-13, Oct. 1983.

[2] R. A. Finkel and J. L. Bentley. Quad trees: a data structor retrieval on composite keys.
Acta Informatica, 4(1):1-9, 1974,

[3] G. R. Hjaltason and H. Samet. Distance browsing in spdaéabases. ACM Transactions
on Database Systems, 24(2):265—-318, June 1999. Also University of Maryland Qoiter
Science Technical Report TR-3919, July 1998.

[4] G. M. Hunter and K. Steiglitz. Operations on images usiogd treeslEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(2):145-153, Apr. 1979.

[5] G. Kedem. The quad-CIF tree: a data structure for hiéiaat on-line algorithms. IrPro-
ceedings of the 19th Design Automation Conference, pages 352—-357, Las Vegas, NV, June
1982. Also University of Rochester Computer Science TexdiriReport TR-91, September
1981.

[6] A. Klinger. Patterns and search statistics. In J. S. &gisteditor,Optimizing Methods in
Satistics, pages 303-337. Academic Press, New York, 1971.

[7] H. Samet. Applications of Spatial Data Sructures. Computer Graphics, |mage Processing,
and GIS Addison-Wesley, Reading, MA, 1990.

[8] H. Samet. The Design and Analysis of Spatial Data Sructures. Addison-Wesley, Reading,
MA, 1990.

[9] H. Samet.Foundations of Multidimensional and Metric Data Sructures. Morgan-Kaufmann,
San Francisco, 2006. (Translated to Chinese ISBN 978-722084-7).

[10] M. Shneier. Calculations of geometric properties gsijuadtrees.Computer Graphics and
Image Processing, 16(3):296—-302, July 1981. Also University of Maryland Quuiter Science
Technical Report TR-770, May 1979.

10

