
CMSC 425 : Fall 2018 Dave Mount

Solutions to the First Practice Midterm Problems

Disclaimer: These solutions have not been fully checked for correctness. If anything seems
fishy, check with me (mount@umd.edu).

Solution 1:

(a) (i) and (iii) are true. Declaring an object to be static informs Unity that the object’s position
is fixed. This means that navigation, physics, and lighting can be optimized based on the
fact that the object’s location does not change. (ii) is false: Even though the object does
not move, it can still interact dynamically with its environment. (iv) is also false: You can
instantiate many instances of a static game object. (The term “static” refers to its position.
It is not related to static variables in programming languages.)

(b) A right-handed system is characterized by the relation ~ux×~uy = ~uz. (In a left-handed system,
the result of the cross product is −~uz.)

(c) (i) and (iii) may provide poor approximations. (i) AABBs will yield a poor approximation if
the thin object is oriented diagonally, (iii) A sphere is never a good approximation to a thin
object.

(d) Task I is an example of forward kinematics, and Task II is an example of inverse kinematics.
Inverse kinematics is more challenging for a number of reasons. First, for a given set of
constraints, a solution might not even exist. Also, there can be be multiple (in fact infinitely
many) solutions. Second, while forward kinematics involves simple matrix multiplications,
inverse kinematics generally involves solving a nonlinear numerical optimization problem.

(e) Declare the object to be kinematic (e.g., by selecting the IsKinematic option in the Inspector
window).

(f) Unlike Euler angles, quaternions are intrinsic, that is, they do not depend on the choice of
coordinate system, and this means that interpolations are more natural.

Solution 2:

(a) In order to determine the equation of the collider plane, we observe that a point q = (x, y, z)
lies on the plane if and only if the free vector from p to q, that is, q − p, is orthogonal
to ~u. Letting p = (px, py, pz) and ~u = (ux, uy, uz), the vector q − p has the coordinates
(x − px, y − py, z − pz). This is orthogonal to ~u if and only if the dot product of these two
vectors is zero, that is, ~u·(q−p) = 0. We can express this explicitly in terms of the coordinates
as

0 = ~u · (q − p) = (ux, uy, uz) · (x− px, y − py, z − pz)
= ux(x− px) + uy(y − py) + uz(z − pz)
= uxx+ uyy + uzz − (uxpx + uypy + uzpz).

It follows that the equation of the collider plane is αx + βy + γz + δ = 0, where α = ux,
β = uy, γ = uz, and δ = −(uxpx + uypy + uzpz).

1

mailto:mount@umd.edu


(b) Any point on the infinite line
←→
ab can be expressed as q(t) = (1− t)a+ tb, for some real t. To

determine the intersection with the collider plane, we plug q(t) into the plane equation from
(a) and solve for t. We have

0 = ~u · (q(t)− p) = ~u · ((1− t)a+ tb− p) = ~u · (t(b− a)− (p− a)).

By the linearity of the dot product operator, we can express this as

0 = t(~u · (b− a))− ~u · (p− a) or equivalently t =
~u · (p− a)

~u · (b− a)
.

To obtain the equivalent expression in terms of the coordinates, we can expand this:

t =
ux(px − ax) + uy(py − ay) + uz(pz − az)
ux(bx − ax) + uy(by − ay) + uz(bz − az)

.

If the divisor is nonzero (see part (c)), then the value of t is well defined. If 0 ≤ t ≤ 1, the
affine combination is a convex combination, and q(t) lies on the line segment ab. If not, both
points either lie above the plane or both lie below it, and we can declare that the segment
does not intersect the collider.

(c) Before computing t in part (b), we should first check whether the divisor is zero. There are
two reasons why this might happen:

(1) It might be that either ~u or b− a is the zero vector. However, this cannot happen. The
problem description stipulates that ~u is a vector of unit length, and b 6= a. Therefore,
neither is the zero vector.

(2) Both vectors are nonzero, but ~u is orthogonal to b − a. Equivalently, the line
←→
ab is

parallel to the collider plane, and hence it either lies in the plane or never intersects it.
This possibility is not explicitly ruled out by the problem description.

Although the problem does not ask you to fix it, here is a hint. If the points lie on
opposite sides of the collider plane, then these two vectors cannot be orthogonal. Thus,
there are three possibilities—both points lie above the collider plane, both lie below it,
or both lie on it. The last case is disallowed by the problem description, but the other
two could happen. You can determine this by the formula given in part (a). Observe
that if it does happen, the line segment cannot hit the collider.

(d) Assuming that part (b) succeeds in the sense that t is well defined and 0 ≤ t ≤ 1, we know
that q(t) lies on the collider plane. All that remains is testing that the distance between q(t)
and p is at most r, the disk’s radius. Recall that the distance between two points is just
the norm of the vector between them. Therefore, letting ~v = q(t)− p, it suffices to test that
~v · ~v ≤ r2. (You could also test that

√
~v · ~v ≤ r. I prefer comparing squared distances to true

distances because computing an extra multiplication is almost always faster than computing
a square root.) If so, the line segment intersects the disk and otherwise it does not.

Solution 3:

(a) The vector ~v from p to q is q − p = (qx − px, qy − py, qz − pz).

2



(b) By basic properties of the dot product, the projection of ~v onto ~u is

~v ′ =
(~v · ~u)

(~u · ~u)
~u.

The perpendicular vector comes about by subtraction ~v ′′ = ~v − ~v ′.

(c) The length of ~v ′ is

‖~v ′‖ =
√

(~v ′ · ~v ′) =
√
v′x

2 + v′y
2 + v′y

2.

The length of ~v ′′ is analogous. To determine whether q lies within the cylinder, we require
that its perpendicular distance from the central axis at most r and its distance from p along
the axis is at most `/2. Thus we have

‖~v ′′‖ ≤ r and ‖~v ′‖ ≤ `

2
.

If so, q lies within the cylinder. Otherwise it does not.

Solution 4: There are a number of ways of deriving the answer. Assuming that it takes some time
t for the ball to travel from the quarterback q to the pass receiver p, the ball travels a distance spt and
the receiver travels a distance of spt. Letting r denote the point where the ball is received, the right
triangle4qpr has a hypotenuse of length sqt and the side opposite angle ϕ is of length spt. It follows
from basic trigonometry that sinϕ = sp/sq, and therefore, ϕ = arcsin(tsp/tsq) = arcsin(sp/sq).
This is well defined if and only if sq > sp. (It is interesting to note that the distance between the
quarterback and the pass receiver does not enter into this computation.)

Solution 5:

(a) Observe that a point represented relative to one joint has its x-coordinate increased when
representing it relative to its parent (which is to its left). Thus, we have:

T[c←d] =

 1 0 8
0 1 0
0 0 1

 T[b←c] =

 1 0 7
0 1 0
0 0 1

 T[a←b] =

 1 0 6
0 1 0
0 0 1

 .

(b) Their product yields the transformation that maps a point from the tip-of-sword frame to the
shoulder frame:

T[a←d] = T[a←b]T[b←c]T[c←d] =

 1 0 21
0 1 0
0 0 1

 .

(c) To obtain the inverse local-pose transformations simply invert these translations. The inverse
of a translation by α is a translation by −α. So, we have

T[d←c] =

 1 0 −8
0 1 0
0 0 1

 T[c←b] =

 1 0 −7
0 1 0
0 0 1

 T[b←a] =

 1 0 −6
0 1 0
0 0 1

 .

3



(d) Let v be the position of the tip of the sword in the bind pose, let v′ be its position after
considering just the hand rotation, and v′′ be its position after considering both the hand and
elbow rotations. We will do everything relative to the shoulder frame (and to make this clear,
we add the subscript [a]). Since, relative to the tip-of-sword frame, we have v[d] = (0, 0, 1), we
can compute this same point relative to the shoulder frame as v[a] = T[a←d]v[d]. In particular,
we have v[a] = (21, 0, 1).

The order of rotations is significant, and in particular, they need to be done in bottom-
up order, from hand to elbow to shoulder. (See the lecture notes for an explanation of
why.) In order to obtain the image v′ after the hand rotation, we first convert the point
into its representation relative to the hand frame (by applying the transformation T[c←a] =
T[c←b] · T[b←a]), apply the hand rotation (Rot(θc)), and then convert back to the shoulder
frame (by applying T[a←c] = T[a←b] · T[b←c]). Thus, we have

v′[a] =
(
T[a←c] · Rot(θc) · T[c←a]

)
· v[a]

=
(
T[a←b] · T[b←c] · Rot(θc) · T[c←b] · T[b←a]

)
· v[a].

Finally, in order to obtain its image v′′ after both rotations, we start with v′ (which we have
expressed relative to the shoulder frame), convert it into its representation relative to the
elbow frame (by applying T[b←a]), apply the elbow rotation (Rot(θb)), and then convert back
to the shoulder frame (by applying T[a←b]). We have

v′′[a] =
(
T[a←b] · Rot(θb) · T[b←a]

)
· v′[a].

Combining these, we have

v′′[a] =
(
T[a←b] · Rot(θb) · T[b←a]

)(
T[a←b] · T[b←c] · Rot(θc) · T[c←b] · T[b←a]

)
· v[a].

We can simplify this by observing that T[b←a] and T[a←b] are inverses, so their product cancels
out. Thus, we have the following result:

v′′[a] =
(
T[a←b] · Rot(θb) · T[b←c] · Rot(θc) · T[c←b] · T[b←a]

)
· v[a].

The sequence of matrices in the parentheses is the final answer.

Solution 6:

(a) The homogeneous coordinates of p with respect to each of the frames are:

(i) Barrel frame: p[c] = (5, 0, 1)T

(ii) Elbow frame: p[b] = (17, 0, 1)T

(iii) Base frame: p[a] = (17, 20, 1)T

(Note that these are all column vectors.)

(b) The local-pose transformation from c to b involves increasing the x-coordinate by 12 and the
local-pose transformation from b to a involves increasing the y-coordinate by 20. Thus, we
have

T[b←c] =

 1 0 12
0 1 0
0 0 1

 T[a←b] =

 1 0 0
0 1 20
0 0 1

 .

4



(c) By combining these two, it follows that the transformation T[a←c] both increases x by 12 and
increases y by 20:

T[a←c] = T[a←b]T[b←c] =

 1 0 12
0 1 20
0 0 1


(d) The inverses just involve decreases by 12 and 20, respectively. So we have:

T[c←b] =

 1 0 −12
0 1 0
0 0 1

 T[b←a] =

 1 0 0
0 1 −20
0 0 1

 .

(e) In order to achieve the desired rotation, we first convert p[a] to p[c] by applying the transfor-
mation T[c←a]. We then apply the rotation transformation Rot(θc) at the barrel joint, then
apply T[b←c] to convert to the elbow joint and apply Rot(θb), and finally apply T[a←b] to
convert from to the base joint and apply Rot(θa). We are now in the coordinate frame for
the base joint, so no further conversions are needed. Since all this proceeds from right to left,
we have

p′[a] =
(
Rot(θa) · T[a←b] · Rot(θb) · T[b←c] · Rot(θc) · T[c←a]

)
p[a].

The final matrix is the quantity in parentheses.

Solution 7:

(a) Using the scalar-vector manner of expressing quaternions, the quaternion that yields the
rotation is given by

q =

(
cos

θ

2
,

(
sin

θ

2

)
~u

)
=

(
cos 30◦, sin 30◦

(
1

3
,
2

3
,
2

3

))
=

(√
3

2
,
1

2

(
1

3
,
2

3
,
2

3

))

=

(√
3

2
,

(
1

6
,
1

3
,
1

3

))
.

(As a quick sanity check, observe that if you square the components of the above vector and
add them, the sum is 3

4 + 1
36 + 1

9 + 1
9 = 1. So this is a unit quaternion, as desired.)

(b) Using the fact that i2 = −1 and ij = k, we find that the product of these two quaternions is

q1 · q2 = (1 + 2i)(3i+ 4j) = 3i+ 4j + 6i2 + 8ij = 3i+ 4j − 6 + 8k

= −6 + 3i+ 4j + 8k,

which is the quaternion (−6, 3, 4, 8).

You could also do this using the equation given in class q1 ·q2 = (st− (u · v), sv+ tu+u× v),
where q1 = (s, ~u) = (1, (2, 0, 0)) and q2 = (t, ~v) = (0, (3, 4, 0)). In this case, we have u · v = 6
and u× v = (0, 0, 8), so this yields

(0− 6, 1 · (3, 4, 0) + 0 · (2, 0, 0) + (0, 0, 8)) = (−6, (3, 4, 8)).

5



Solution 8:

(a) The lower left corner of square [i, j] is the point (i∆, j∆). The corners of the square [i, j] are
((i + b)∆, (j + c)∆), where b and c take on all possible combinations of the values 0 and 1,
that is, (0,0), (0,1), (1,0), (1,1).

(b) The point (x, y) lies within the grid square [i, j] = [bx/∆c , by/∆c].

(c) This problem is remarkably tricky, and there are a number of different solutions. Note that
there is an easy O(n2) solution that arises by classifying all the square of the grid, and
outputting those crossed by the line.

Here is a simple O(n)-time solution, which assumes that a is nonnegative (it can even be
greater than 1). First, we find the lowest row j (if any) crossed by the line on column i = 0.
If every square on this column lies beneath the line, then the algorithm can safely terminate
because the slope is nonnegative and so no square can be crossed. (If this occurs, the value
of j will be set to n, and the second loop will never be executed.)

Otherwise, we assume the invariant that the current square [i, j] is crossed by the line. Because
the slope is nonnegative, the line will either go next to the square immediately to the right
[i+ 1, j] or to the square immediately above [i, j + 1]. (We ignore the degenerate case where
the line goes through the upper-right corner.) If the square to the immediate right is crossed,
we go there next (by incrementing i). Otherwise we to the square above (by incrementing j).

i = j = 0;

while (j < n && classify(i, j, a, b) < 0) j++;

while (i < n && j < n) {

output "[i, j]";

if (classify(i+1, j, a, b) == 0) i++;

else j++;

}

The running time is O(n). The initial while-loop can iterate at most n times. Otherwise,
with each iteration we either increment i or j, which can be done at most 2n times.

6


