
CMSC 425 Dave Mount

CMSC 425: Lecture 11
Skeletal Animation and Skinning

Reading: Chapt 11 of Gregory, Game Engine Architecture.

Recap: Last time we introduced the principal elements of skeletal models and discussed forward
kinematics. Recall that a skeletal model consists of a collection of joints, which have been
joined into a rooted tree structure. Each joint of the skeleton is associated with a coordinate
frame which specifies its position and orientation in space. Each joint can be rotated (subject
to sum constraints). The assignment of rotation angles (or generally rotation transformations)
to the individual joints defines the skeleton’s pose, that is, its geometrical configuration in
space. Joint rotations are defined relative to a default pose, called the bind pose (or reference
pose).

Last time, we showed how to determine the skeleton’s configuration from a set of joint angles.
This is called forward kinematics. (In contrast, inverse kinematics involves the question of
determining how to set the joint angles to achieve some desired configuration, such as grasping
a door knob.) Today we will discuss how animation clips are represented, how to cover these
skeletons with “skin” in order to form a realistic model, and how to move the skin smoothly
as part of the animation process.

Local and Global Pose Transformations: Recall from last time that, given a joint j (not the
root), its parent joint is denoted p(j). We assume that each joint j is associated with two
transformations, the local-pose transformation, denoted T[p(j)←j], which converts a point in
j’s coordinate system to its representation in its parent’s coordinate system, and the inverse
local-pose transformation, which reverses this process. (These transformations may be repre-
sented explicitly, say, as a 4× 4 matrix in homogeneous coordinates, or implicitly by given a
translation vector and a rotation, expressed, say as a quaternion.)

Recall that these transformations are defined relative to the bind pose. By chaining (that is,
multiplying) these matrices together in an appropriate manner, for any two joints j and k,
we can generally compute the transformation T[k←j] that maps points in j’s coordinate frame
to their representation in k’s coordinate frame (again, with respect to the bind pose.)

Let M (for “Model”) denote the joint associated with the root of the model tree. We define
the global pose transformation, denoted T[M←j], to be the transformation that maps points
expressed locally relative to joint j’s coordinate frame to their representation relative to the
model’s global frame. Clearly, T[M←j] can be computed as the product of the local-pose
transformations from j up to the root of the tree.

Meta-Joints: One complicating issue involving skeletal animation arises from the fact that dif-
ferent joints have different numbers of degrees of freedom. A clever trick that can be used
to store joints with multiple degrees of freedom (like a shoulder) is to break the into two or
more separate joints, one for each degree of freedom. These meta-joints share the same point
as their origin (that is, the translational offset between them is the zero vector). Each meta-
joint is responsible for a single rotational degree of freedom. For example, for the shoulder
one joint might handle rotation about the vertical axis (left-right) and another might handle

Lecture 11 1 Fall 2018



CMSC 425 Dave Mount

rotation about the forward axis (up-down) (see Fig. 1). Between the two, the full spectrum
of two-dimensional rotation can be covered. This allows us to assume that each joint has just
a single degree of freedom.

(a) (b)

Fig. 1: Using two meta-joints (b) to simulate a single joint with two degrees of freedom (a).

Animating the Model: There are a number of ways to obtain joint angles for an animation.
Here are a few:

Motion Capture: For the common motion of humans and animals, the easiest way to obtain
animation data is to capture the motion from a subject. Markers are placed on a
subject, who is then asked to perform certain actions (walking, running, jumping, etc.)
By tracking the markers using multiple cameras or other technologies, it is possible to
reconstruct the positions of the joints. From these, it is simple exercise in linear algebra
to determine the joint angles that gave rise to these motions.

Motion capture has the advantage of producing natural motions. Of course, it might be
difficult to apply for fictitious creatures, such as flying dragons.

Key-frame Generated: A design artist can use animation modeling software to specify
the joint angles. This is usually done by a process called key framing, where the artists
gives a detailed layout of the model at certain “key” instances in over the course of the
animation, called key frames. (For example, when animating a football kicker, the artist
might include the moment when the leg starts to swing forward, an intermediate point in
the swing, and the point at which the leg is at its maximum extension.) An automated
system can then be used to smoothly interpolate the joint angles between consecutive
key frames in order to obtain the final animation. (The term “frame” here should not
be confused with the use of term “coordinate frame” associated with the joints.)

Goal Oriented/Inverse kinematics: In an ideal world, an animator could specify the de-
sired behavior at a high level (e.g., “a character approaches a table and picks up a
book”). Then the physics/AI systems would determine a natural-looking animation to
achieve this. This is quite challenging. The reason is that the problem is under-specified,
and it can be quite difficult to select among an infinite number of valid solutions. Also,
determining the joint angles to achieve a particular goal reduces to a complex nonlinear
optimization problem.

Lecture 11 2 Fall 2018



CMSC 425 Dave Mount

Representing Animation Clips: In order to specify an animation, we need to specify how the
joint angles or generally the joint frames vary with time. This can result in a huge amount
of data. Each joint that can be independently rotated defines a degree of freedom in the
specification of the pose. For example, the human body has over 200 degrees of freedom!
(It’s amazing to think that our brain can control it all!) Of course, this counts lots of fine
motion that would not normally be part of an animation, but even a crude modeling of just
arms (not including fingers), legs (not including toes), torso, neck involves over 20 degrees of
freedom.

As with any digital signal processing (such as image, audio, and video processing), the stan-
dard approach for efficiently representing animation data is to first sample the data at suf-
ficiently small time intervals. Then, use some form of interpolation technique to produce a
smooth reconstruction of the animation. The simplest manner to interpolate values is based
on linear interpolation. It may be desireable to produce smoother results by applying more
sophisticated interpolations, such as quadratic or cubic spline interpolations. When dealing
with rotated vector quantities, it is common to use spherical interpolation.

In Fig. 2 we give a graphical presentation of a animation clip. Let us consider a fairly general
set up, in which each pose transformation (either local or global, depending on what your
system prefers) is represented by a 3-element translation vector (x, y, z) indicating the joint
frame’s position and a 4-element quaternion vector (s, t, u, v) to represent the frame’s rotation.
Each row of this representation is a sequence of scalar values, and is called a channel.

Time samples

0 1 2 3 4 5 6 7
x
y
z

s
t
u
v

Joint 0

x
y
z

s
t
u
v

Joint 1

Time

T0,x

T0

Q0

T1

Q1

Linear interpolation

Frame rate

Time samples

0 1 2 3 4 5 6 7
x
y
z

s
t
u
v

Joint 0

x
y
z

s
t
u
v

Joint 1

Time

T0,x

T0

Q0

T1

Q1

Linear interpolation

Frame rate

Meta channels
Event triggers

Left footstep Right footstep

Camera motion

Fig. 2: An uncompressed animation stream.

It is often useful to add further information to the animation, which are not necessarily related
to the rendering of the moving character. Examples include:

Event triggers: These are discrete signals sent to other parts of the game system. For
example, you might want a certain sound playback to start with a particular event (e.g.,
footstep sound), a display event (e.g., starting a particle system that shows a cloud

Lecture 11 3 Fall 2018



CMSC 425 Dave Mount

of dust rising from the footstep), or you may want to trigger a game event (e.g., a
non-playing character ducks to avoid a punch).

Continuous information: You may want some process to adjust smoothly as a result of
the animation. An example would be having the camera motion being coordinated
with the animation. Another example would be parameters that continuously modify
the texture coordinates or lighting properties of the object. Unlike event triggers, such
actions should be smoothly interpolated.

This auxiliary information can be encoded in additional streams, called meta-channels (see
Fig. 2). This information will be interpreted by the game engine.

Skinning and Vertex Binding: Now that we know how to specify the movement of the skeleton
over time, let us consider how to animate the skin that will constitute the drawing of the
character. The first question is how to represent this skin. The most convenient representation
from a designer’s perspective, and the one that we will use, is to position the skeleton in the
reference pose and draw the skin around the resulting structure (see Fig. 3(a)).

joint

bone

skin

overlap

crack

(a) (b)

Fig. 3: (a) Binding skin to a skeletal model in the reference pose and (b) cracks and overlaps.

In order that the skin move smoothly along with the skeleton, we need to associate, or bind,
vertices of the mesh to joints of the system, so that when the joints move, the skin moves as
well. (This is the reason that the reference pose is called the bind pose.)

If we were to bind each vertex to a single joint, then we would observe cracks and overlaps
appearing in our skin whenever neighboring vertices are bound to two different joints that
are rotated apart from one another.

Dealing with this problem in a realistic manner will be too difficult. (The manner in which
the tissues under your skin deform is a complex anatomical process. Including clothing on top
of this makes for a tricky problem in physics as well.) Instead, our approach will be to find
a heuristic solution that will be easy to compute and (hopefully) will produce fairly realistic
results.

Lecture 11 4 Fall 2018



CMSC 425 Dave Mount

Linear-Blend Skinning: The trick is to allow each vertex of the mesh to be bound to multiple
joints. When this is done, each joint to which a vertex is bound is assigned a weighting factor,
that specifies the degree to which this joint influences the movement of the vertex.

For example, the mesh vertices near your elbow will be bound to both the shoulder joint (your
upper arm) and the elbow joint (your lower arm). As we move down the arm, the shoulder
weight factor diminishes while the elbow weight factor increases. Consider for example,
consider a vertex v that is located slightly above the elbow joint (see Fig. 4(a)). In the
bind pose, let v1 and v2 denote its positions relative to the shoulder and elbow joint frames,
respectively.1 Since this point is slightly above the elbow joint, we give a slightly higher
weight with respect to the shoulder joint. Suppose that the weights are w1 = 3

4 and w2 = 1
4 .

v1 v2

v

shoulder elbow

v′1 v′2 v′1 v′2

v′ = 3
4v

′
1 +

1
4v

′
2

(a) (b) (c) (d)

Fig. 4: Skinning with multiple joint bindings.

Now, suppose that we bend both of these joints. Let v′1 and v′2 denote the respective images
of the points v1 and v2 after the rotation. They will be in the same position relative to their
respective joints, but their absolute positions in space have changed due to the rotation. See
Fig. 4(b). We use our weight factors to interpolate between these two positions, so the final
position of the vertex is at the point v′ = 3

4v
′
1 + 1

4v
′
2 (see Fig. 4(c)). This is the simplest

way to blend vertex positions and is called linear-blend skinning. There are many other
methods (such as dual quaternion skinning), which achieve more realistic results at the price
of additional computation time. Because of the smooth variations in weights, the vertices of
the mesh will form a smooth interpolation between the upper arm and the lower arm (see
Fig. 4(d)). It may not be anatomically realistic, but it is a reasonable approximation for small
rotation angles, it avoids cracks, and it is very easy to compute.

To make this more formal, we assume that each vertex of the mesh is associated with:

Joints: A list of joint indices to which this mesh vertex is bound

Weights: A corresponding list of weights, which determine the influence of each joint on this
vertex. These weights are assumed to be nonnegative and sum to 1.

The number of joints to which a typical vertex is bound is typically small, e.g., from two
to four. Good solid modelers provide tools to automatically assign weights to vertices, and
designers can query and adjust these weights until they produce the desired look.

1Here we are thinking of v1 and v2 as the homogeneous vectors used to represent the “intrinsic” point v. If we
were to express this in terms of the notation developed in the previous lecture, let i be the shoulder-joint index, and
let j be the elbow-joint index. Then, v1 = v[i] and v2 = v[j].

Lecture 11 5 Fall 2018



CMSC 425 Dave Mount

The above binding information can be incorporated into the mesh information already as-
sociated with a vertex: the (x, y, z)-coordinates of its location (with respect to the model
coordinate system), the (x, y, z)-coordinates of its normal vector (for lighting and shading
computation), and its (s, t) texture coordinates.

Moving the Joints without Blending: Let’s begin by considering how to compute vertex po-
sitions assuming the simple case where each vertex is bound to a single joint. In order to
derive the computations needed to move a vertex from its initial position to its final position.
The notation is going to be rather heavy from this point on, but the ideas are relatively
straightforward:

• Convert the vertex to the current joint’s coordinate frame (local pose transformation)

• Apply the desired rotation at this joint for the current animation time

• Move on to the next joint

First, recall that our animation system informs us at any time t the current angle for any

joint. Abstractly, we can think of this joint angle as providing a local rotation, R
(t)
[j] , that

specifies how joint j has rotated. For example, if the joint has undergone a rotation through

an angle θ about some axis, then R
(t)
[j] would be represented by a rotation matrix by angle θ

about this same axis. (The analysis that we perform below works under the assumption that

R
(t)
[j] is any affine transformation, not necessarily a rotation.)

Consider a vertex v of the mesh. Let v(0) denote v’s position in the initial reference pose, and
let v(t) denote its position at the current time. We assume that this information is provided
to us from the solid modeler. We can express v in one of two coordinate systems. Let v[j]
denote its initial position with respect to j’s coordinate frame and let v[M ] denote its initial
position with respect to the model’s frame. Given the above local rotation transformation,

we have v
(t)
[j] = R

(t)
[j] v

(0)
[j] .2

Recall that T[M←j] denotes the bind-pose transformation, which we introduced earlier. In

general, let T
(t)
[M←j] denote the transformation that maps the vertex v

(0)
[j] (which is in j’s

coordinate frame at time 0) to v
(t)
[M ] (which is in the model’s frame at any time t).

Let’s consider how to compute T
(t)
[M←j]. As we did earlier, we’ll build this up in a series of

stages, by converting a point from its frame to its parent, then its grandparent, and so on
until we reach the root of the tree. To map a vertex at time 0 from its frame to its parent’s
frame at time t we need to do two things. First, we apply the local joint rotation that takes
us from time 0 to time t with respect to j’s local frame, and then we transform this to j’s

parent’s frame. That is, we need to first apply R
(t)
[j] and then T[p(j)←j]. Let us define T

(t)
[p(j)←j]

to be the product T[p(j)←j]R
(t)
[j] . We now have

v
(t)
p(j) = T[p(j)←j]v

(t)
[j] = T[p(j)←j]R

(t)
[j] v

(0)
[j] = T

(t)
[p(j)←j]v

(0)
[j] .

2Because we assume that v rotates with frame j, its representation with respect to j does not really change over
time. Instead, think of v

(t)

[j] as its representation relative to the joint’s unrotated reference frame.

Lecture 11 6 Fall 2018



CMSC 425 Dave Mount

To obtain the position of a vertex associated with j’s coordinate frame, we need only compose
these matrices in a chain working back up to the root of the tree. We apply a rotation,
convert to the coordinate frame of the parent joint, apply the parent rotation, convert to the
coordinates of the grandparent joint, and so on. Suppose that the path from j to the root is
j = j1 → j2 → . . .→ jm = M , then transformation we desire is

T
(t)
[M←j] = T

(t)
[jm←jm−1]

. . . T
(t)
[j3←j2]

T
(t)
[j2←j1]

= T[jm←jm−1]R
(t)
[jm−1]

. . . T[j3←j2]R
(t)
[j2]
T[j2←j1]R

(t)
[j1]
.

We refer to this as the current-pose transformation, since it tells where joint j is at time
t relative to the model’s global coordinate system. Observe that with each animation time

step, all the matrices R
(t)
[j] change, and therefore we need to perform a full traversal of the

skeletal tree to compute T
(t)
[M←j] for all joints j. Fortunately, a typical skeleton has perhaps

tens of joints, and so this does not represent a significant computational burden (in contrast
to operations that need to be performed on each of the individual vertices of a skeletal mesh).

Moving the Joints with Blending (Optional): Finally, let’s consider how to apply blended
skinning together with the dynamic pose transformations. This will tell us where every vertex
of the mesh is mapped to in the currrent animation. We assume that for the current-pose

transformation T
(t)
[M←j] has been computed for all the joints, and we assume that each vertex v

is associated with a list of joints and associated weights. Let J(v) = {j1, . . . , jk} be the joints
associated with vertex v, and let W (v) = {w1, . . . , wk} be the associated weights. Typically,
k is a small number, ranging say from 1 to 4. For i running from 1 to k, our approach will be
compute the coordinates of v relative to joint ji, then apply the current-pose transformation
for this joint in order to obtain the coordinates of v relative to the (global) model frame. This
gives us k distinct points, each behaving as if it were attached to a different joint. We then
blend these points together, to obtain the desired result.

Recall the inverse bind-pose transformation T[j←M ], which maps a vertex v from its coordi-
nates in the model frame to its coordinates relative to j’s coordinate frame. This transfor-
mation is defined relative to the bind pose, and so is applied to vertices of the original model,
prior to animation. Once we have the vertex in its representation at time 0 relative to joint

j, we can then apply the current-pose transformation T
(t)
[M←j] to map it to its current position

relative to the model frame. If v was bound to a single joint j, we would have

v
(t)
[M ] = T

(t)
[M←j]T[j←M ]v

(0)
[M ].

Let us define K
(t)
[j] = T

(t)
[M←j]T[j←M ]. This is called the skinning transformation for joint j.

Intuitively, it tells us where vertex v is mapped to under at time t of the animation assuming
that it is fixed to joint j.

Now, we can generalize this to the case of blending among a collection of vertices. Recall
that v has been bound to the joints of J(v). Its blended position at time t is given by the

weighted sum of the image of the skinning transformed vertices K
(t)
[ji]
v
(0)
[M ] for each joint ji to

which v is bound:
v
(t)
[M ] =

∑
ji∈J(v)

wiK
(t)
[ji]
v
(0)
[M ].

Lecture 11 7 Fall 2018



CMSC 425 Dave Mount

This then is the final answer that we seek. While it looks like a lot of matrix computation,
remember each vertex is associated with a constant number of joints, and each joint is typically
at constant depth in the skeletal tree. Once these matrices are computed, they may be stored
and reused for all the vertices of the mesh.

Discussion: A simple example of this is shown in Fig. 5. In Fig. 5(a) we show the reference pose.
In Fig. 5(b), we show what might happen if every vertex is bound to a single joint. When
the joint flexes, the vertices at the boundary between to bones crack apart from each other.
In Fig. 5(c) we have made a very small change. The vertices lying on the seam between the
two pieces have been bound to both joints j1 and j2, each with a weight of 1/2. Each of these
vertices is effectively now placed at the midpoint of the two “cracked” copies. The result is
not very smooth, but it could be made much smoother by adding weights to the neighboring
vertices as well.

j1

(a) (b)

j2

(c)

j1 j2 j1

Reference pose Each vertex bound to one joint Vertices bound to both joints

j2

Fig. 5: A simple example of blended skinning.

It is worth making a few observations at this point about the storage/computational require-
ments of this approach.

Matrix palette: In order to blend every vertex of the model, we need only one matrix for

each joint of the skeleton, namely the skinning matrices K
(t)
[j] . While a skeleton may

have perhaps tens of joints, it may have hundreds of vertices. Assuming that the joint
are indexed by integers, the palette can be passed to the GPU as an array of matrices.

Vertex information: Each vertex is associated with a small list of joint indices and weights.
In particular, we do not need to associate entire matrices with individual vertices.

From the perspective of GPU implementation, this representation is very efficient. In partic-
ular, we need only associate a small number of scalar values with each vertex (of which there
are many), and we store a single vertex with each joint (or which there are relatively few). In
spite of the apparent tree structure of the skeleton, everything here can be represented using
just simple arrays. Modern GPUs provide support for storing matrix palettes and performing
this type of blending.

Shortcomings of Blended Skinning: While the aforementioned technique is particularly well
suited to efficient GPU implementation, it is not without its shortcomings. In particular, if
joints are subjected to high rotations, either in flexing or in twisting, the effect can be to cause
the skin to deform in particular unnatural looking ways (see Fig. 6). This is often referred to
as the candy-wrapper effect. Other skinning methods can be used to avoid these artifacts.

Lecture 11 8 Fall 2018



CMSC 425 Dave Mount

(a) (b)

Fig. 6: Shortcomings of vertex blending in skinning: (a) Collapsing due to bending and (b) col-
lapsing due to twisting.

Lecture 11 9 Fall 2018


