
CMSC 425 Dave Mount

CMSC 425: Lecture 13
Procedural Generation: L-Systems

Reading: This material comes from Chapter 1 of The Algorithmic Beauty of Plants, by P. Prun-
sinkiewicz and A. Lindenmayer, 2004. It can be accessed online from http://algorithmicbotany.org/papers/.

L-Systems: Today, we will consider the question issue of how to automatically generate “tree-like”
objects, which are characterized by a process of growth and branching. The standard approach
is through a structure called an L-system. L-systems, short for Lindenmayer-systems, were
first proposed by a biologist Aristid Lindenmayer in 1968, as a mechanism for defining plant
development.

Fig. 1: Examples of simple plant models generated by L-systems.

If you have taken a course in formal language theory, the concept of an L-system is very
similar to the concept of a context-free grammar. We start with an alphabet, V which is a
finite set of characters, called symbols or variables. There is one special symbol (or generally
a string) ω ∈ V , called the start symbol (or start string). Finally, there is a finite set of
production rules. Each production replaces a single variable with a string (or zero or more)
symbols (which may be variables or constants). Such a rule is expressed in the following form:

〈variable〉 → 〈string〉.

Letting V denote the variables, ω denote the start symbol/string, and P denote the production
rules, an L-system is formally defined by the triple (V, ω, P).

Symbols are categorized in two types: variables are symbols that appear on the left-hand
sides of production rules and can be replaced, and constants (or terminals), which cannot be
replaced. An L-system is said to be deterministic if for each variable, there is a single rule
having this variable on its left side.

To get a better grasp on this, let us consider a simple example, developed by Lindenmayer
himself to describe the growth of the Anabaena catenula algae (see Fig. 2(a)). The variables
are V = {A,B}, there are no constants, the start symbol is ω = A, and the rules are:

P = {A→ AB; B→ A}

Lecture 13 1 Fall 2018

http://algorithmicbotany.org/papers/

CMSC 425 Dave Mount

A

AB

ABA

ABAAB

ABAABABA

(b)(a)

Fig. 2: L-system modeling the growth of the Anabaena catenula algae.

An L-system works as follows. Starting with the start symbol, we repeatedly replace each
variable with a compatible rule. In this case, each occurrence of A is mapped to AB and
each occurrence of B is mapped to A. This is repeated for some desired number of levels (see
Fig. 2(b)).

As an aside, if you count the number of symbols in each of the strings, you’ll observe the
sequence 〈1, 2, 3, 5, 8, 13, 21, . . .〉. Is this sequence familiar? This is the famous Fibonacci
sequence, which has been observed to arise in the growth patterns of many organisms.

Using L-Systems to Generate Shapes: So what does this have to do with shape generation?
The idea is to let each symbol represent some sort of drawing command (e.g., draw a line
segment, turn at a specified angle, etc.) This is sometimes referred to as turtle geometry (I
guess this is because each command is thought of as being relayed to a turtle who carries out
the drawing process).

The system is defined by two parameters, a step size d and a angle increment δ. The state of
the turtle is defined by a triple (x, y, α), where (x, y) is the turtle’s current position and α is
its heading, the direction it is currently facing (see Fig. 3(a)). Define the following commands:

(a)

(x, y) α

f +

δ α + δδ

F
Current −

α− δ

(b) (c) (d) (e)

Fig. 3: Turtle-geometry operations.

• “F”: Move forward by a step of length d in the current direction, that is, change the
state from (x, y, α) to the new state (x+d cosα, y+d sinα, α), and draw a line from the
current position to the new position (see Fig. 3(b)).

• “f”: Same as F, but just move without drawing a line (see Fig. 3(c)).

• “+”: Increase the turn angle by δ, that is, change the state from (x, y, α) to (x, y, α+ δ)
(see Fig. 3(c)).

Lecture 13 2 Fall 2018

CMSC 425 Dave Mount

• “−”: Decrease the turn angle by δ, that is, change the state from (x, y, α) to (x, y, α−δ)
(see Fig. 3(d)).

As an example, let us consider how to design a turtle-geometry L-system that generates the
Koch Island from the material on fractals (see Fig. 4). Let d = 1 and δ = 90◦. Let us assume
that we start in the lower-left corner of the square ((x, y) = (0, 0)) and the heading is to the
east (α = 0).

K0 K1

F

F

F

F

F F

F F

+

+

+

−
(b) (c)

start

(a) (d)

F

+

F

+

+

F

F

start

−
−

(scale this further by 1/2)

Fig. 4: The Koch Island.

V = {F, f,+,−}
ω = F + F + F + F

p = {F→ F + F− F− FF + F + F− F}

Observe that ω generates a unit square (four line segments with 90◦ turns between each, see
Fig. 3(b)). Then with each subsequent level we replace each existing line segment (F) with
8 segments, with appropriate turns in between (see Fig. 3(c)). To match the scale of earlier
example, we can adjust di = 1/4i in order to generate Ki. This reflects the fact that with
each iteration, the lengths of the line segments decreases by a factor of 1/4.

Turtle-Based Trees: Let us extend this to the generation of tree-like objects. To make this
possible, we will introduce two special symbols “ [” and “]” which intuitively mean respectively
to save the current state on a push-down stack and to pop the stack and restore this as the
current state. Such a system is called an L-system with brackets.

Let’s see if we can apply this for generating a turtle-geometry drawing of a simple tree-like
structure shown in Fig. 5. Intuitively, we identify the symbol “0” with a small stem and a
circular leaf. This will be our starting tree, that is ω = 0.

To “grow” the tree, we will generate a stem, which will be modeled by a line segment of unit
length in the current direction, and will be denoted in our system by the symbol “1”. The
first-level tree consists of a stem with two copies of the leaf unit, each of half the original size,
one rotated by 45◦ and the other rotated by −45◦. To obtain this, we define two state-control
symbols, “+”, which scales by roughly 1/2 and rotates CCW by −45◦ and “−”, which scales
by roughly 1/2 and rotates CW by 45◦. Thus, our first-level tree can be described by the

Lecture 13 3 Fall 2018

CMSC 425 Dave Mount

1

00

1[+0][−0] 1[+1[+0][−0]][−1[+0][−0]]

11
0

0 0

0 11

11

0 0

0 0

00

0 0

0

0

n = 0 n = 1 n = 2 n = 3

1

11

1

1[+1[...left...][−1[...right...]]

start start start start

+ −

Fig. 5: A simple tree-like structure generated by an L-system with brackets. (Note that the figure
is not drawn exactly to scale.) With each branching, the scale factor decreases by roughly 1/2.

string “1[+ 0] [− 0] .” The next level arises by replacing each of the leaf structures in the
same recursive manner. This suggests the following L-system:

V = {0, 1,+,−, [,]}
ω = 0

P = {0→ 1[+ 0] [− 0]}

If we carry out the first few stages of the expansion, we have the following sequences. The
associated sequence of drawings is shown in Fig. 5.

n = 0 : 0

n = 1 : 1[+ 0] [− 0]

n = 2 : 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]

n = 3 : 1[+ 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]] [− 1[+ 1[+ 0] [− 0]] [− 1[+ 0] [− 0]]]

Randomization and Stochastic L-Systems: As described, L-systems generate objects that are
too regular to model natural objects. However, it is an easy matter to add randomization.

The first way of introducing randomness is to randomize the graphical/geometric operations.
For example, rather than mapping terminal symbols into fixed actions (e.g., draw a unit-
length line segment), we could add some variation (e.g., draw a line segment whose length
is a random value between 0.9 and 1.1). Examples include variations in drawing lengths,
variations in branching angles, and variations in thickness and/or texture (see Fig. 1).

While the above modifications alter the geometric properties of the generated objects, the
underlying structure is still the same. We can modify L-systems to generate random structures
by associating each production rule with a probability, and apply the rules randomly according
to these probabilities. For example consider the following two rules:

a −→[0.4] a[b] a −→[0.6] b[a]b

Lecture 13 4 Fall 2018

CMSC 425 Dave Mount

The interpretation is that the first rule is to by applied 40% of the time and the second rule
60% of the time.

Lecture 13 5 Fall 2018

