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CMSC 425: Lecture 14
Procedural Generation: Perlin Noise

Reading: The material on Perlin Noise based in part by the notes Perlin Noise, by Hugo Elias.
(The link to his materials seems to have been lost.) This is not exactly the same as Perlin noise,
but the principles are the same.

Procedural Generation: Big game companies can hire armies of artists to create the immense
content that make up the game’s virtual world. If you are designing a game without such
extensive resources, an attractive alternative for certain natural phenomena (such as terrains,
trees, and atmospheric effects) is through the use of procedural generation. With the aid
of a random number generator, a high quality procedural generation system can produce
remarkably realistic models. Examples of such systems include terragen (see Fig. 1(a)) and
speedtree (see Fig. 1(b)).

(a) (b)

terragen speedtree

Fig. 1: (a) A terrain generated by terragen and (b) a scene with trees generated by speedtree.

Before discussing methods for generating such interesting structures, we need to begin with
a background, which is interesting in its own right. The question is how to construct random
noise that has nice structural properties. In the 1980’s, Ken Perlin came up with a powerful
and general method for doing this (for which he won an Academy Award!). The technique
is now widely referred to as Perlin Noise (see Fig. 2(a)). A terrain resulting from applying
this is shown in Fig. 2(b). (The terragen software uses randomized methods like Perlin noise
as a starting point for generating a terrain and then employs additional operations such as
simulated erosion, to achieve heightened realism.)

Perlin Noise: Natural phenomena derive their richness from random variations. In computer
science, pseudo-random number generators are used to produce number sequences that appear
to be random. These sequences are designed to behave in a totally random manner, so that
it is virtually impossible to predict the next value based on the sequence of preceding values.
Nature, however, does not work this way. While there are variations, for example, in the
elevations of a mountain or the curves in a river, there is also a great deal of structure present
as well.

One of the key elements to the variations we see in natural phenomena is that the magnitude
of random variations depends on the scale (or size) at which we perceive these phenomena.
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(a) (b)

Fig. 2: (a) Two-dimensional Perlin noise and (b) a terrain generated by Perlin noise.

Consider, for example, the textures shown in Fig. 3. By varying the frequency of the noise
we can obtain significantly different textures.

Fig. 3: Perlin noise used to generate a variety of displacement textures.

The tendency to see repeating patterns arising at different scales is called self similarity and
it is fundamental to many phenomena in science and nature. Such structures are studied in
mathematics under the name of fractals, as we have seen in an earlier lecture. Perlin noise
can be viewed as a type of random noise that is self similar at different scales, and hence it
is one way of modeling random fractal objects.

Noise Functions: Let us begin with the following question:

How do you convert the output of a pseudo-random number generator into a smooth
(but random looking) function?

To start, let us consider a sequence of random numbers in the interval [0, 1] produced by
a random number generator (see Fig. 4(a)). Let Y = 〈y0, . . . , yn〉 denote the sequence of
random values, and let us plot them at the uniformly places points X = 〈0, . . . , n〉.
Next, let us map these points to a continuous function, we could apply linear interpolation
between pairs of points (also called piecewise linear interpolation. As we have seen earlier
this semester, in order to interpolate linearly between two values yi and yi+1, we define a
parameter α that varies between 0 and 1, the interpolated value is

lerp(yi, yi+1, α) = (1− α)yi + αyi+1.
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Fig. 4: (a) Random points, (b) connected by linear interpolation, and (c) connected by cosine
interpolation.

To make this work in a piecewise setting we need to set α to the fractional part of the x-value
that lies between i and i+1. In particular, if we define x mod 1 = x−bxc to be the fractional
part of x, we can define the linear interpolation function to be

f`(x) = lerp(yi, yi+1, α), where i = bxc and α = x mod 1.

The result is the function shown in Fig. 4(b).

While linear interpolation is easy to define, it will not be sufficient smooth for our purposes.
There are a number of ways in which to define smoother interpolating functions. (This is
a topic that is usually covered in computer graphics courses.) A quick-and-dirty way to
define such an interpolation is to replace the linear blending functions (1−α) and α in linear
interpolation with smoother functions that have similar properties. In particular, observe
that α varies from 0 to 1, the function 1− α varies from 1 down to 0 while α goes the other
way, and for any value of α these two functions sum to 1 (see Fig. 5(a)). Observe that the
functions (cos(πα)+1)/2 and (1−cos(πα))/2 behave in exactly this same way (see Fig. 5(b)).
Thus, we can use them as a basis for an interpolation method.
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Fig. 5: The blending functions used for (a) linear interpolation and (b) cosine interpolation.

Define g(α) = (1 − cos(πα))/2. The cosine interpolation between two points yi and yi+1 is
defined:

cerp(yi, yi+1, α) = (1− g(α))yi + g(α)yi+1,

and we can extend this to a sequence of points as

fc(x) = cerp(yi, yi+1, α), where i = bxc and α = x mod 1.
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The result is shown in Fig. 4(c). While cosine interpolation does not generally produce very
good looking results when interpolating general data sets. (Notice for example the rather
artificial looking flat spot as we pass through the fourth point of the sequence.) Interpolation
methods such as cubic interpolation and Hermite interpolate are preferred. It is worth re-
membering, however, that we are interpolating random noise, so the lack of “goodness” here
is not much of an issue.

Layering Noise: Our noise function is continuous, but there is no self-similarity to its structure.
To achieve this, we will need to combine the noise function in various ways. Our approach
will be similar to the approach used in the harmonic analysis of functions.

Recall that when we have a periodic function, like sin t or cos t, we define (see Fig. 6)

Wavelength: The distance between successive wave crests

Frequency: The number of crests per unit distance, that is, the reciprocal of the wavelength

Amplitude: The height of the crests

wavelength

amplitude

Fig. 6: Properties of periodic functions.

If we want to decrease the wavelength (equivalently increase the frequency) we can scale up
the argument. For example sin t has a wavelength of 2π, sin(2t) has a wavelength of π, and
sin(4t) has a wavelength of π/2. (By increasing the value of the argument we are increasing the
function’s frequency, which decreases the wavelength.) To decrease the function’s amplitude,
we apply a scale factor that is smaller than 1 to the value of the function. Thus, for any
positive reals ω and α, the function α · sin(ωt) has a wavelength of 2π/ω and an amplitude
of α.

Now, let’s consider doing this to our noise function. Let f(x) be the noise function as defined
in the previous section. Let us assume that 0 ≤ x ≤ n and that the function repeats so that
f(0) = f(n) and let us assume further that the derivatives match at x = 0 and x = n. We
can convert f into a periodic function for all t ∈ R, which we call noise(t), by defining

noise(t) = f(t mod n).

(Again we are using the mod function in the context of real numbers. Formally, we define
x mod n = x − n · bx/nc.) For example, the top graph of Fig. 7 shows three wavelengths of
noise(t).

In order to achieve self-similarity, we will sum together this noise function, but using different
frequencies and with different amplitudes. First, we will consider the noise function with
exponentially increasing frequencies: noise(t), noise(2t), noise(4t), . . . , noise(2it) (see Fig. 8).
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Note that we have not changed the underlying function, we have merely modified its frequency.
In the jargon of Perlin noise, these are called octaves, because like musical octaves, the
frequency doubles.1 Because frequencies double with each octave, you do not need very many
octaves, because there is nothing to be gained by considering wavelengths that are larger than
the entire screen nor smaller than a single pixel. Thus, the logarithm of the window size is a
natural upper bound on the number of octaves.
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Fig. 7: The periodic noise function at various frequencies.

High frequency noise tends to be of lower amplitude. If we were in a purely self-similar situa-
tion, when the double the frequency, we should halve the amplitude. In order to provide the
designer with more control, Perlin noise allows the designer to specify a separate amplitude
for each frequency. A common way in which to do this is to define a parameter, called persis-
tence, that specifies how rapidly the amplitudes decrease. Persistence is a number between 0
and 1. The larger the persistence value, the more noticeable are the higher frequency com-
ponents. (That is, the more “jagged” the noise appears.) In particular, given a persistence
of p, we define the amplitude at the ith stage to be pi. The final noise value is the sum, over
all the octaves, of the persistence-scaled noise functions. In summary, we have

perlin(t) =
k∑

i=0

pi · noise(2i · t),

where k is the highest-frequency octave.

It is possible to achieve greater control over the process by allowing the user to modify the
octave scaling values (currently 2i) and the persistence values (currently pi).

1In general, it is possible to use factors other than 2. Such a factor is called the lacunarity of the Perlin noise
function. For example, a lacunarity value of ` means that the frequency at stage i will be `i.
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Fig. 8: Dampened noise functions and the Perlin noise function (with persistence p = 1/2).

Perlin Noise in 2D: (The material from here until the end of the lecture is optional)

In the previous lecture we introduced the concept of Perlin noise, a structured random func-
tion, in a one-dimensional setting. In this lecture we show how to generalize this concept to
a two-dimensional setting. Such two-dimensional noise functions can be used for generating
pseudo-random terrains and two-dimensional pseudo-random textures.

The general approach is the same as in the one-dimensional case:

• Generate a finite sample of random values

• Generate a noise function that interpolates smoothly between these values

• Sum together various octaves of this function by scaling it down by factors of 1/2, and
then applying a dampening persistence value to each successive octave, so that high
frequency variations are diminished

Let’s investigate the finer points. First, let us begin by assuming that we have an n×n grid of
unit squares (see Fig. 9(a)), for a relatively small number n (e.g., n might range from 2 to 10).
For each vertex [i, j] of this grid, where 0 ≤ i, j ≤ n, let us generate a random scalar value
z[i,j]. (Note that these values are actually not very important. In Perlin’s implementation of
the noise function, these value are all set to 0, and it still produces a remarkably rich looking
noise function.) As in the 1-dimensional case, it is convenient to have the values wrap around,
which we can achieve by setting z[i,n] = z[i,0] and z[n,j] = z[0,j] for all i and j.

Lecture 14 6 Fall 2018



CMSC 425 Dave Mount

Given any point (x, y), where 0 ≤ x, y < n, the corner points of the square containing this
point are (x0, y0), (x1, y0), (x1, y1), (x0, y1) where:

x0 = bxc and x1 = (x0 + 1) mod n

y0 = byc and y1 = (y0 + 1) mod n

(see Fig. 9(a)).
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Fig. 9: Generating 2-dimensional Perlin noise.

We could simply apply smoothing to the random values at the grid points, but this would
produce a result that clearly had a rectangular blocky look (since every square would suffer the
same variation). Instead, Perlin came up with a way to have every vertex behave differently,
by creating a random gradient at each vertex of the grid.

Noise from Random Gradients: Before explaining the concept of gradients, let’s recall some
basics from differential calculus. Given a continuous function f(x) of a single variable x, we
know that the derivative of the function df/dx yields the tangent slope at the point (x, f(x))
on the function. If we instead consider a function f(x, y) of two variables, we can visualize the
function values (x, y, f(x, y)) as defining the height of a point on a two-dimensional terrain. If
f is smooth, then each point of the terrain can be associated with tangent plane. The “slope”
of the tangent plane passing through such a point is defined by the partial derivatives of the
function, namely ∂f/∂x and ∂f/∂y. The vector (∂f/∂x, ∂f/∂y) is a vector in the (x, y)-plane
that points in the direction of steepest ascent for the function f . This vector changes from
point to point, depending on f . It is called the gradient of f , and is often denoted ∇f .

Perlin’s approach to producing a noisy 2-dimensional terrain involves computing a random 2-
dimensional gradient vector at each vertex of the grid with the eventual aim that the smoothed
noise function have this gradient value. Since these vectors are random, the resulting noisy
terrain will appear to behave very differently from one vertex of the grid to the next. At one
vertex the terrain may be sloping up to the northeast, and at a neighboring vertex it may be
sloping to south-southwest. The random variations in slope result in a very complex terrain.
But how do we define a smooth function that has this behavior? In the one dimensional case
we used cosine interpolation. Let’s see how to generalize this to a two-dimensional setting.
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Consider a single square of the grid, with corners (x0, y0), (x1, y0), (x1, y1), (x0, y1). Let g[0,0],
g[1,0], g[1,1], and g[0,1] denote the corresponding randomly generated 2-dimensional gradient
vectors (see Fig. 9(c)). Now, for each point (x, y) in the interior of this grid square, we need to
blend the effects of the gradients at the corners. To do this, for each corner we will compute
a vector from the corner to the point (x, y). In particular, define

v[0,0] = (x, y)− (x0, y0) and v[0,1] = (x, y)− (x0, y1)

v[1,0] = (x, y)− (x1, y0) and v[1,1] = (x, y)− (x1, y1)

(see Fig. 9(c)).

Next, for each corner point of the square, we generate an associated vertical displacement,
which indicates the height of the point (x, y) due to the effect of the gradient at this corner
point. How should this displacement be defined? Let’s fix a corner, say (x, 0, y0). Intuitively,
if v[0,0] is directed in the same direction as the gradient vector, then the vertical displacement
will increase (since we are going uphill). If it is in the opposite direction, the displacement
will decrease (since we are going downhill). If the two vectors are orthogonal, then the vector
v[0,0] is directed neither up- or downhill, and so the displacement is zero. Among the vector
operations we have studied, the dot product produces exactly this sort of behavior. (When two
vectors are aligned, the dot-product is maximized, when they are anti-aligned it is minimized,
and it is zero when they are orthogonal. It also scales linearly with the length, so that a point
that is twice as far away along a given direction has twice the displacement.) With this in
mind, let us define the following scalar displacement values:

δ[0,0] = (v[0,0] · g[0,0]) and δ[0,1] = (v[0,1] · g[0,1])
δ[1,0] = (v[1,0] · g[1,0]) and δ[1,1] = (v[1,1] · g[1,1]).

Fading: The problem with these scalar displacement values is that they are affected by all the
corners of the square, and in fact, as we get farther from the associated corner point the
displacement gets larger. We want the gradient effect to apply close to the vertex, and then
have it drop off quickly as we get closer to another vertex. That is, we want the gradient
effect of this vertex to fade as we get farther from the vertex. To do this, Perlin defines the
following fade function. This is a function of t that will start at 0 when t = 0 (no fading) and
will approach 1 when t = 1 (full fading). Perlin originally settled on a cubic function to do
this, ϕ(t) = 3t2 − 2t3. (Notice that this has the desired properties, and further its derivative
is zero at t = 0 and t = 1, so it will smoothly interpolate with neighboring squares.) Later,
Perlin observed that this function has nonzero second derivatives at 0 and 1, and so he settled
on the following improved fade function:

ψ(t) = 6t5 − 15t4 + 10t3

(see Fig. 10). Observe again that ψ(0) = 0 and ψ(1) = 1, and the first and second derivatives
are both zero at these endpoints.

Because we want the effects to fade as a function of both x and y, we define the joint fade
function to be the product of the fade functions along x and y:

Ψ(x, y) = ψ(x)ψ(y).
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Fig. 10: The fade function.

The final noise value at the point (x, y), arises by taking the weighted average of gradient
displacements, where each displacement is weighted according to the fade function.

We need to apply the joint fade function differently for each vertex. For example, consider
the fading for the displacement δ[1,0] of the lower right corner vertex. We want the influence
of this vertex to increase as x approaches 1, which will be achieved by using a weight of ψ(x).
Similarly, we want the influence of this vertex to increase as y approaches 0, which will be
achieved by using a weight of ψ(1−y). Therefore, to achieve both of these effects, we will use
the joint weight function Ψ(x, 1− y). By applying this reasoning to the other corner vertices,
we obtain the following 2-dimensional noise function.

noise(x, y) = Ψ(1− x, 1− y)δ[0,0] + Ψ(x, 1− y)δ[1,0] + Ψ(1− x, y)δ[0,1] + Ψ(x, y)δ[1,1].

Adding Back the Random Heights: We have left one little bit out of our noise function. Re-
member that we started off by assigning random scalar values to each of the of the grid.
We never made use of these (and indeed, Perlin’s formulation of the noise function does not
either). In order to achieve this extra degree of randomness, we can add these back into the
vertical displacements. Suppose, for example that we are considering the grid square whose
lower left corner has the indices [i, j]. When defining the vertical displacements, let us add
in the associated random scalar values associated with each of the vertices:

δ[0,0] = z[i,j] + (v[0,0] · g[0,0]) and δ[0,1] = z[i,j+1] + (v[0,1] · g[0,1])
δ[1,0] = z[i+1,j] + (v[1,0] · g[1,0]) and δ[1,1] = z[i+1,j+1] + (v[1,1] · g[1,1]).

The rest of the noise computation is exactly the same as described above.

Octaves and Persistence: After all of that work, we still have only a single smooth noise func-
tion, but not one that demonstrates the sort of fractal-like properties we desire. To add this,
we need to perform the same scaling that we used for the 1-dimensional case. In this case,
the process is entirely analogous. As before, let p be a value between 0 and 1, which will
determine how quickly things dampen down. Also, as before, at each level of the process,
we will double the frequency. This leads to the following final definition of the 2-dimensional
Perlin noise:

perlin(x, y) =
k∑

i=0

pi · noise(2i · x, 2i · y).
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(As before, recall that the value 2i can be replaced by some parameter `i, where ` > 1.) This
applies to each square individually. We need to perform the usual “modding” to generalize
this to any square of the grid. (An example of the final result is shown in Fig. 2(a).)

Source Code: While the mathematical concepts that we have discussed are quite involved, it is
remarkable that Perlin noise has a very simple implementation. The entire implementation
can be obtained from Perlin’s web page, and is shown nearly in its entirety in the code block
below.

Perlin’s Implementation of Perlin Noise

public final class ImprovedNoise {

static public double noise(double x, double y, double z) {

int X = (int)Math.floor(x) & 255, // Fine unit cube that

Y = (int)Math.floor(y) & 255, // contains point

Z = (int)Math.floor(z) & 255;

x -= Math.floor(x); // Find relative x,y,z

y -= Math.floor(y); // of point in cube

z -= Math.floor(z);

double u = fade(x), // Compute fade curves

v = fade(y), // for each of x,y,z

w = fade(z);

int A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,// Hash coordinates of

B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;// the 8 cube corners

// ... and add blended results from 8 corners of cube

return lerp(w, lerp(v, lerp(u, grad(p[AA ], x , y , z ),

grad(p[BA ], x-1, y , z )),

lerp(u, grad(p[AB ], x , y-1, z ),

grad(p[BB ], x-1, y-1, z ))),

lerp(v, lerp(u, grad(p[AA+1], x , y , z-1 ),

grad(p[BA+1], x-1, y , z-1 )),

lerp(u, grad(p[AB+1], x , y-1, z-1 ),

grad(p[BB+1], x-1, y-1, z-1 ))));

}

static double fade(double t) { return t*t*t*(t*(t*6 - 15) + 10); }

static double lerp(double t, double a, double b)

{ return a + t*(b - a); }

static double grad(int hash , double x, double y, double z) {

int h = hash & 15; // Convert low 4 bits of hash code

double u = h<8 ? x : y, // into 12 gradient directions

v = h<4 ? y : h==12||h==14 ? x : z;

return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);

}

static final int p[] = new int [512], permutation [] = {

151,160 ,137 ,91 ,90 ,15 , // ... remaining 506 entries omitted

};

static { for (int i=0; i < 256 ; i++)

p[256+i] = p[i] = permutation[i]; }

}
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