
CMSC 425
Programming Assignment 1, Part 2
Implementation Notes

Disclaimer
We provide these notes to help in the design of your project. There is no requirement that you use our
settings, and in fact your encouraged to be creative and experiment. These notes have not been
carefully proofread, and we apologize for any errors. If there is any other information that would be
useful, please let us know.

Installment 1

Environment/Platform
The environment for Part 2 consists of the Platform, which is generated at run-time. Thus, the only thing
that you will see in Scene view is the bowling ball.

The Platform is generated from a collection of tiles. Each tile is a Unity cube of dimension 10 x 1 x 10.
Because we did not have use of the Unity physics engine, we did not need to associate a collider or rigid-
body with each tile. We assigned the tile a dark blue color, RGB = (30, 50, 150).

Creating/Loading/Instantiating the Tile Prefabs
You will need to create prefabs that will be loaded at run time. Here is how to do this.

Create the prefab:

• First, use Create → 3D Object → Cube. Set its name to “Tile”. Be sure to reset its position to (0,
0, 0). (See the Roll-A-Ball tutorial for how to reset newly created objects.) Scale it to the
appropriate size and create/assign its material.

• To turn it into a prefab that can be loaded, first go into your Project window, and at the root
level create a new directory called “Resources”. Then drag your Tile game object into the
Resources folder (or if you prefer, it can be in any subfolder within this folder).

• Delete the Tile from your Hierarchy window. It has now been saved as a prefab, and so you
don’t need the one in your Hierarchy any more.

Load the prefab:

• Before you instantiate your prefab, you need to load it. This is done with the following
command:

GameObject tile = Resources.Load("Tile") as GameObject;

You only need to do this once. When the game object is loaded, you can instantiate as many
copies as you like. This command will likely be placed in the script that builds your platform.
Note that the Load command looks in the folder “Resources”, so the argument “Tile” is the path
leading to the Tile prefab within the Resources folder (that is, “Assets/Resources/Tile”).

Instantiate the Prefab:

• We will be generating lots of prefabs. To keep them from cluttering up our hierarchy, let’s make
them the children of some empty game object. Let’s create a Unity empty game object, and
name it “Platform”. We can attach our script for generating the platform to this game object.

• To build the platform, you will need to instantiate several tiles in the desired pattern. Given the
layout suggested in the project handout, because the tiles are 10 x 10 in size, if you wanted to
instantiate a tile at row (row) and column (col) of your platform grid, its center would be at the
coordinates (10 * col, 0, 10 * row). That is, the z-coordinates correspond to the rows of the
defining matrix, and the x-coordinates correspond to the columns of the defining matrix.

• To instantiate a prefab, we use Unity’s Instantiate command. We need specify three things: the
location of the instantiated object, its rotation (which for us will just be the identity), and its
parent. Since our script for generating the platform will be attached to our empty Platform
object, the desired parent will just be our own transform. Thus, we can use the following
command for generating a tile at a given row (row) and column (col) using:

GameObject newTile = Instantiate(tile, new Vector3(10 * col, 0, 10 * row),
Quaternion.identity, transform);

Platform
As mentioned in the project handout, your platform should be generated by a script that inputs an
array-based description of the platform and instantiates the appropriate set of tiles. In our
implementation, we used an array of strings to do this:

 string[] platformLayout = {
 "* *************",
 "* * * *",
 "* * * * *",
 "* * * * *",
 "* ********* *",
 "* * * *",
 "******* *****",
 " * ",
 "**** * ",
 "* * *********",
 "* * * *",
 "* ***** * *",
 "* * * * *",
 "* * * * *",
 "** * * * *",
 " * * * * *",
 " * *** ***** *",
 " * * *",
 " * * *******",
 " * **** " };

You should feel free to experiment with a platform of your own design. (Just don’t make it so hard the
grader can’t win your game.)

Our platform has 20 rows and 15 columns. To generate the platform, write a couple of loops to run
through the string array and instantiate tiles corresponding to the rows and columns having an asterisk.
By the way, in C# you can access row r and column c in this string array using platformLayout[r][c].

Because you will also need to refer to this array throughout the game, you may wish to generate your
own representation of the structure for more convenient processing, but this is entirely up to you. For
example, I created a parallel (20x15)-dimensional array where I stored a reference to the game objects
returned by the Instantiate command. This might come in handy for other purposes. For example, if I
wanted to change the color of the tile on which the ball is sitting, such an array of references would be
useful.

Camera
For Installment-1, we just reused the camera controller from the Roll-A-Ball tutorial. It was placed 20
units above and 10 units behind the initial placement of the ball.

Note that this is not correct for Installment 2. Eventually, the camera will have to change its position so
that it follows behind the ball object whenever it changes direction. If you want to get a head start on
Installment-2, you may want to check out the Unity command, Transform.LookAt, which creates a
rotation that will point the camera in any desired direction.

Lights
We used a single directional light with the Euler-angle rotation (50, 60, 0).

Ball
As in Part 1, the ball is a black sphere, scaled to 2 x 2 x 2. We set its initial position to (0, 1.5, 0), which is
just above the origin so that it sits on top of a tile placed at the origin (row = 0, col = 0). To obtain a shiny
appearance, we set the material’s “Smoothness” setting to 0.75.

Even though we won’t be making much use of physics, we will need to detect collisions with the bunnies
in Installment-2. For this reason, we associated it with a RigidBody and gave it a sphere collider. We
made this collider a trigger.

Controlling the Ball’s Motion
In addition to creating the platform, the biggest challenge of Installment-1 is controlling the ball’s
movement. Since the ball is spherical, we do not need to worry about rotating the ball, just setting its
position.

Since we do not rely on physics, we will need to create a script, call it BallController, to control the
movement of the ball. This will require that we have access to the platform structure. Remember that
Unity provides you with a mechanism for exchanging information between different game objects. For
example, if you wanted your BallController to obtain access to the platformLayout string array, you

could create a getter function in your Platform object that takes care of this by defining a public function
in your PlatformController script

 public string[] GetLayout() { return platformLayout; }

and then from your BallController script, you could access this using:

 GameObject platform = GameObject.Find("Platform");
 PlatformController platformController = platform.GetComponent<PlatformController>();
 string[] layout = platformController.GetLayout();

and now your ball controller has access to the platform layout array. (By the way, like Java, C# has a
shorthand for generating getters and setters. Just Google it.)

State:
Controlling the ball’s motion is mostly involved with maintaining information about the current state of
the ball. This state will tell you everything that you need to know to determine where the ball moves
from one update call to the next. The following items are relevant to the ball’s current state:

• Current position, which can be extracted from transform.position
• Current tile row and column index within the platform
• Current direction of motion
• Position relative to the midpoint of the current tile (before or beyond)

There is some redundancy in the above (for example, if you know the current position, current tile, and
direction of motion, you can determine whether the ball has yet to reach the tile’s midpoint or is beyond
the tile’s midpoint). There are several possible ways of representing these entities, and at various times,
one representation may be more convenient than another.

For example, we chose to represent the balls direction as an integer 0, 1, 2, 3 (for North, East, South,
and West, respectively, where the z-axis points North and the x-axis points East). This was handy for
representing turns, since a right turn caused the direction to change as direction = (direction + 1) % 4.
But, it was less convenient for other tasks. For example, you might want to compute a unit vector,
directionVector, that points in the direction that the ball is moving.

This assignment provides the opportunity to think about good object-oriented design, and you should
give some thought to your design.

From Input to Movement:
Given the above state information, here one approach for determining how to update the ball’s
position. (Of course, you may organize your code differently, and that is fine provided that the same
behavior results.) We found it clearest to assign the ball one of three different status types:

BEFORE: The ball has entered a tile, but has not yet reached the tile’s midpoint

BEYOND: The ball has passed through the tile’s midpoint

BLOCKED: On reaching the tile midpoint, the ball cannot proceed, and must wait until the player enters
a valid turn request.

When the user provides a Left-turn or Right-turn input, the controller checks whether the turn is valid. A
turn is valid if (1) the square into which the turn is requested exists within the platform, and (2) the
ball’s status is either BLOCKED or BEFORE. Invalid turn requests are punished by decreasing the ball’s
current speed. (We reduced it to 25% of its current value.) If a request is valid, we save this information
for later processing.

Let oldPosition denote the previous position of the ball. If everything goes to plan, the ball will advance
along its current direction vector by the product of its current speed times the elapsed time, that is:

newPosition = oldPosition + directionVector * speed * Time.deltaTime;

Of course, it will not make it there if the way is blocked. Here is how we suggest processing an Update
event for the ball, based on the ball’s status. (This relies on the assumption that the ball moves a
relatively small distance with each update step.)

BEFORE: (Not yet reached the tile’s midpoint)

• If newPosition is also BEFORE, then advance to newPosition
• Otherwise, we have just passed the tile midpoint.

o If a valid turn has been requested, advance to the tile’s midpoint, update the ball’s
direction based on the requested turn, and set the status to BEYOND.

o If no turn has been requested but continuing forward is valid (since there is a tile ahead)
then advance to newPosition, and set the status to BEYOND.

o Otherwise (invalid to proceed), advance to the tile’s midpoint and set the status to
BLOCKED.

BEYOND: (Gone past the tile’s midpoint)

• If newPosition is in the same tile as oldPosition, then advance to the newPosition.
• Otherwise, advance to newPosition but note the change in the current tile, and set the status to

BEFORE.

BLOCKED: (Stuck at the tile’s midpoint)

• If a turn is requested and it is valid (there is a tile in that direction), then update the ball’s
direction based on the requested turn, and set the status to BEYOND.

Object-Oriented Design:
This is a great opportunity to consider how to approach this problem from an object-oriented
perspective. One or more of the following objects might be useful:

Platform – Encapsulates the structure of the platform, allowing you to query which row-column entries
contain tiles are which do not.

Locator – Encapsulates a (row, column) pair of a single tile on the platform. It might be nice to also
incorporate a direction as part of this. Such a class could have a function that answers queries such as “if
the ball moves in direction X through this tile, does the adjacent tile exist in the platform?”.

State – Encapsulates all the information relevant to the current state of the ball.

There is not one correct answer for how to design your program, but this is a matter to which you
should give some thought. A good design should make it possible for you to express the ball’s motion in
terms of clear and natural operations applied to objects (like “direction.TurnRight()”), rather than
obscure expressions (like “(direction + 1) % 4”).

By the way, not all your classes need to be derived from Monobehaviour. If it makes sense for your class
object to have an Update function (such as BallController) then clearly you need to derive from
Monobehaviour. However, if you just wanted to create a class that encapsulates a tile’s (row,column)
location in the platform grid, then it need not be derived from Monobehaviour.

Speed:
Unlike the Roll-A-Ball tutorial, the ball’s speed is not under the direct control of the player, but it is
affected by the player’s actions. By speed, we mean just the scalar value, not the direction.

We set a variable maxSpeed to 30 and an acceleration rate of 20. (I think that I said 10 in the handout,
but I’ve changed it since.) If the ball is not blocked at its current speed is less than maxSpeed, we
increase its speed by acceleration * Time.deltaTime (up to a maximum of maxSpeed).

Restarting, Quitting, Pausing, Slow-Motion
To restart a given level, you just need to load the scene. Since we have multiple scenes now, it is
probably easiest to do this by name:

 UnityEngine.SceneManagement.SceneManager.LoadScene(“Part-1-Scene”);

or

 UnityEngine.SceneManagement.SceneManager.LoadScene(“Part-2-Scene”);

Recall that you can quit using:

 Application.Quit();

Pause and Un-pause and Slow-Motion can be implemented by a quick-and-dirty (but less than perfect)
method:

 Time.timeScale = 1.0f; // normal time

 Time.timeScale = 0.0f; // pause

 Time.timeScale = 0.5f; // 1/2 slow motion

Before loading a new scene, reset the time scale back to 1.

Installment 2

Getting the Camera to Follow the Ball
The camera should follow the player by a fixed distance and at a fixed height above the tile surface. We
placed our camera 20 units behind the player, and 30 units above, relative to the ball’s current position.
We then rotated the camera so that it is pointing directly to the ball’s center. This only involves a few

lines of Unity C# code (which will go into your camera controller script), but I will go through the entire
derivation, since it is a nice exercise in geometric programming.

To place the camera, we need to specify both its position and direction. As in the Roll-A-Ball tutorial, the
camera’s position is explicitly set in a camera-controller script based on the ball’s position. Unlike Roll-A-
Ball, the camera needs to follow the ball, and so we will need to take the ball’s direction into account as
well.

Let pb denote the current position of the ball, let vb be a unit-length vector that indicates the direction in
which the ball is moving. In your solution to Installment 1, your ball controller will have access to both
the ball’s position and direction. You will need to provide the appropriate public getter functions so that
your camera controller can access this information as well.

Our first task is to show how compute an offset vector vc of the camera relative to the ball. The vertical
(y) component of this vector will be fixed throughout (as 30 units above the center of ball). So, let us
focus on how to compute its (x, z) components. First, let’s consider the ideal state, where the camera is
following directly behind the ball. (We will discuss smooth camera motion in the next section.) Suppose
that we use our earlier convention where the ball’s direction is given as 0, 1, 2, 3 for N, E, S, and W,
respectively. Call this ballDirection. Then the clockwise angle (in degrees) of the ball’s direct relative to
due north is

𝜃𝜃𝑏𝑏 ← 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 90.

(As the ballDirection varies from 0 to 4, this will vary from 0 to 360, as expected.) To compute the
directional vector, we need to take the sine and cosine of this angle. For this we need to convert from
degrees to radians. Unity provides a built-in scale factor for this, called Mathf.Deg2Rad. We can
compute the (x, z) coordinates of the ball’s horizontal direction vector as

𝑣𝑣𝑏𝑏 ← (sin(𝜃𝜃𝑏𝑏 ∙ Mathf.Deg2Rad), cos(𝜃𝜃𝑏𝑏 ∙ Mathf.Deg2Rad)).

(Unity provides functions Mathf.Sin and Mathf.Cos to compute these functions.) Since we want the
camera to trail the ball by 20 units, our desired camera offset vector is -20 vb. If we take the y-coordinate
into account as well, this yields an offset vector of

𝑣𝑣𝑐𝑐 ← (−20 sin(𝜃𝜃𝑏𝑏 ∙ Mathf.Deg2Rad), 30,−20 cos(𝜃𝜃𝑏𝑏 ∙ Mathf.Deg2Rad)).

Given this vector, the position of the camera can be computed as pc ← pb + vc. We use this to set the
camera’s transform.position in the camera’s LateUpdate function, just as in Roll-A-Ball. Once the
camera’s position is known, we just need to determine how to rotate the camera so that it faces the
ball. This latter computation can be done very easily, because Unity provides a function for this:

transform.LookAt(Transform target);

If you apply this to the camera’s transform, it will rotate the camera to point at the given target point.
Setting target to the ball’s position yields the desired camera rotation.

Smooth Camera Motion
There is one major problem with the above solution. Since the ball can change direction
instantaneously, this results in a jarring jump in the camera’s position whenever the ball changes

direction. Instead, we want the camera to rotate gradually into the proper position after each direction
change. It is very easy to modify the above code to achieve this. The key is that when ballDirection
changes, we do not want to immediately change the value of θb. Instead, we will gradually interpolate
from the current rotation angle to the desired one.

To do this, let us save the current camera rotation angle in a variable θc. Then, the next time that
LateUpdate is called, we compute the value of θb as before, but rather than use it to rotate the camera
directly, instead we interpolate between the saved value, θc, and the desired new value, θb. Normally,
we would use Mathf.Lerp to do this, but because we are interpolating angles (in the range from 0 to
360 degrees) and we want to avoid issues of the discontinuities close to 0 and 360, we use
Math.LerpAngle. The amount of interpolation is a number between 0 and 1 and is given in the third
argument. It should be sensitive to the value of Time.deltaTime, but you can include a scalar multiplier
to adjust how fast the angle turns.

θc ← Mathf.LerpAngle(θc, θb, angleSpeed * Time.deltaTime);

We set angleSpeed to 2 in our implementation. Given this angle, we modify our computation
of the offset vector to:

𝑣𝑣𝑐𝑐 ← (−20 sin(𝜃𝜃𝑐𝑐 ∙ Mathf.Deg2Rad), 30,−20 cos(𝜃𝜃𝑐𝑐 ∙ Mathf.Deg2Rad)).

Otherwise, everything from the previous section is the same.

Chasers
Our chasers consisted of a group of 10 copies of the bowling pin object from Part 1. We placed them
under a common empty game object in a rather arbitrary set of positions (since we didn’t want them to
look like a triangle of bowling pins). We centered the group one tile behind the ball, with the (x, z)
coordinates of (0, -1). The y-coordinate was adjusted so that the pins sit on top of the tiles.

As with the ball, the chasers start with a speed of 0, and they accelerate in the same manner as the ball
(see the section “Speed:” above) but their maximum speed was only 28 (in contrast to the ball’s
maximum speed of 30).

We offered two possible solutions for the chasing behavior:

Impulsive Chasing – The chasing game object simply moves toward the current ball location. While this
is not very realistic, it is very easy to code. Here you can employ the following handy Unity function. Let
currentPos be a Vector3 that gives the current position of the chaser object, let target be a Vector3
giving the desired target location (i.e., the ball), and let speed denote the desired speed. Then:

Vector3.MoveTowards(currentPos, ballPos, speed * Time.deltaTime);

Returns a Vector3 containing the result of moving from the current position towards the ball’s position
at the given speed.

This method is suitable for partial credit, but it is not realistic, since the chasers can walk right off the
platform. (We disabled gravity, so they don’t fall.)

Path Following – The better way to solve the problem is to have the chasers following the same path as
the ball. The approach is described in the assignment handout, which we quote below:

This can be done as follows. A queue data structure is created. Each time the runner
passes through the center of a tile, we enqueue information describing the runner's
action (turn-left, turn-right, or no-turn). Then when the chaser reaches its next tile (which
the runner may have passed many tiles earlier), we dequeue the turn information and
execute the desired turn. Thus, if the player is three tiles ahead of the chaser, there will
be three entries in the queue. (Note that C# provides a generic Queue data type, so no
need to implement your own.)

Since the chaser does not start on the same tile as the runner, this queue should be
initialized with the turns needed to get to the runner's initial tile. (It is not necessary to
implement a general solution. In our implementation, we assumed that the chaser always
starts one tile behind the runner, and we initialized the queue with a single entry ``no
turn''.)

Rotating the Chasers to Face the Ball
We also want the chasers to rotate so that they face the ball that they are chasing. This can either be
done to the parent chaser object (so the chasers rotate as a group) or individually to each chaser (so
each rotates in place). We applied it to the parent object.

The idea is to compute a vector from the chaser object towards the ball object, call it the chasing
direction vector, and then apply a rotation about the vertical (y) axis to align the chaser’s forward vector
with this chasing direction vector. One easy solution is to apply the LookAt function, which we
introduced earlier for the camera:

transform.LookAt(Transform target);

where the target is the ball’s transform.

The result is not bad, but when the pins get very close to the target, they can lose their vertical
orientation and slant upward or downwards, depending on whether the ball’s center is higher or lower
than the pin’s center. An alternative approach, which you may prefer, is to use the Unity function that
generates a rotation that gradually turns towards a given location. This function is called
Vector3.RotateTowards. We used this approach in our implementation. (It is combined with the
function Quaternion.LookRotation. You can check these out in the Unity documentation.) We
explicitly set the y-component of the directional vector to 0 to avoid the vertical slant issue, which the
LookAt method suffered from.

Getting the Bunnies to Hop
Although it is not a requirement of the assignment, it is nice to add some additional movement to the
bunnies. We chose to add a simple hopping animation. The idea is very simple. Associate a script with
each individual bunny that modifies the y-coordinate of the transform’s position as a function of time.
This can be done by adding the following lines to your Update function for each pin:

 Vector3 newPos = transform.position;
 newPos.y = JumpHeight(Time.time);
 transform.position = newPos;

All that remains is to define a appropriate function JumpHeight, which changes the height as a function
of time. JumpHeight should be a periodical function of time. You might consider using a sinusoidal
function, but this will look a bit more like the smooth up-and-down movement of a horse in a carousel.
To get something that looks more like hopping, you want a function that changes instantaneously when
it hits the ground. The graphs below illustrate two examples of such functions, where the function
shown in (b) is more like a hopping behavior. (We used a quadratic function in our implementation, but
the sinusoidal function is easier to implement.)

To avoid having all your bunnies jumping in synchronization, you can add some additional randomness.
For example, the function 𝛼𝛼 sin(𝛽𝛽t + 𝛾𝛾) has an amplitude (height) proportional to α, a frequency
proportional to β, and a horizontal offset proportional to γ. By making these three parameters random
properties of each bunny, their motions will differ from each other.

(More to come, stay tuned.)

	Disclaimer
	Installment 1
	Environment/Platform
	Creating/Loading/Instantiating the Tile Prefabs
	Platform
	Camera
	Lights
	Ball
	Controlling the Ball’s Motion
	State:
	From Input to Movement:
	Object-Oriented Design:
	Speed:

	Restarting, Quitting, Pausing, Slow-Motion
	Installment 2
	Getting the Camera to Follow the Ball
	Smooth Camera Motion
	Chasers
	Rotating the Chasers to Face the Ball
	Getting the Bunnies to Hop

