In Class Exercise - Operational Semantics Derivations

Tuesday, September 25, 2018
This problem uses a subset of the language of arithmetic expressions we saw in lecture:

$$
a::=n|X| a+a
$$

where $X \in \operatorname{Var}$ ranges over variables, and a program state $\sigma: \operatorname{Var} \rightarrow n$ maps variables to integers n.

1. Consider the following big-step semantics rules:

$$
\overline{\langle n, \sigma\rangle \rightarrow n} \quad \overline{\langle X, \sigma\rangle \rightarrow \sigma(X)} \quad \frac{\left\langle a_{1}, \sigma\right\rangle \rightarrow n}{} \quad\left\langle a_{2}, \sigma\right\rangle \rightarrow m \quad p=n+m
$$

Write a derivation showing that $\langle(1+X)+3, \sigma\rangle \rightarrow 6$ if $\sigma=[X \mapsto 2]$.
2. Consider the following small-step semantics rules:

$$
\overline{X \rightarrow_{\sigma} \sigma(X)} \quad \frac{a_{1} \rightarrow_{\sigma} a_{1}^{\prime}}{a_{1}+a_{2} \rightarrow_{\sigma} a_{1}^{\prime}+a_{2}} \quad \frac{a_{2} \rightarrow_{\sigma} a_{2}^{\prime}}{n+a_{2} \rightarrow_{\sigma} n+a_{2}^{\prime}} \quad \frac{p=n+m}{n+m \rightarrow_{\sigma} p}
$$

Write a sequence of derivations showing that $(1+X)+3 \rightarrow_{\sigma}^{*} 6$ if $\sigma=[X \mapsto 2]$. Here \rightarrow_{σ}^{*} is the reflexive, transitive closure of \rightarrow_{σ}.

