
Name:

Midterm 1
CMSC 430

Introduction to Compilers
Fall 2012

October 10, 2012

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 42

3 16

4 22

Total 100

1

Question 1. Short Answer (20 points).

a. (7 points) Briefly explain the difference between big-step and small-step operational semantics. What
kinds of programs can we assign meaning to using a small-step semantics that are difficult to assign meaning
to using a big-step semantics? (You might find it useful to refer to IMP in your discussion.)

Answer: A big-step semantics reduces a program “all at once” to a result. For example, in IMP,
the big-step reduction for commands has the form 〈c, σ〉 → σ′, producing the new state σ′ in
one, big step. In contrast, a small-step semantics reduces one subexpression of the program, and
may take many steps to reduce to the final result. In IMP, small-step reductions for commands
have the form 〈c, σ〉 → 〈c′, σ′〉. One advantage to small-step semantics is that it lets us assign
meaning to non-termination programs which, since they never produce a final value, do not have
meaning in a big-step setting.

b. (7 points) Explain briefly how LALR(1) parsing differs from LR(1) parsing, and give one advantage
and one disadvantage of LALR(1) as compared to LR(1).

Answer: LALR(1) parsing compresses the action and goto tables of an LR(1) parser by com-
bining DFA states whose LR(0) items are the same (i.e., taking the LR(1) items and ignoring the
lookaheads). This can result in smaller parsing tables, which could shrink the size of the parser
and potentially improve speed. But it also can introduce new reduce/reduce conflicts. (Note that
it will never introduce shift/reduce conflicts.)

2

c. (6 points) Consider the data type for lambda expressions from Project 1:

type expr =

| Var of string

| Lam of string * expr

| App of expr * expr

Write a function free vars : expr -> string list that returns the list of free variables in a lambda
expression.

Answer: (No sample solution.)

3

Question 2. Parsing (42 points).

a. (10 points) Consider the following grammar and the corresponding action and goto tables.

S′ → S
0. S → ABb
1. A → ε
2. A → aA
3. B → b
4. B → cB

action goto
state a b c $ A B S

0 s1 r1 r1 3 9
1 s1 r1 r1 2
2 r2
3 s7 s8 4
4 s5
5 r0
6 r4
7 r3
8 s7 s8 6
9 accept

Fill in the following table with the steps taken by the parser on the given input string. Note that we have
explicitly written in the end-of-file character, $, at the end of the input, which we omitted on Homework 1.
(You may not need to use all the lines below.)

Stack Input Action

0 accbb$ s1

0, a, 1 ccbb$ r1

0, a, 1, A, 2 ccbb$ r2

0, A, 3 ccbb$ s8

0, A, 3, c, 8 cbb$ s8

0, A, 3, c, 8, c, 8 bb$ s7

0, A, 3, c, 8, c, 8, b, 7 b$ r3

0, A, 3, c, 8, c, 8, B, 6 b$ r4

0, A, 3, c, 8, B, 6 b$ r4

0, A, 3, B, 4 b$ s5

0, A, 3, B, 4, b, 5 $ r0

0, S, 9 $ accept

4

b. (14 points) Draw the LR(1) parsing DFA for the following grammar.

S → aSb
S → c

Answer: First we need to augment the grammar with an additional production S′ → S.

[S' → .S, $]
[S → .aSb, $]
[S → .c, $]

[S → a.Sb, $]
[S → .aSb, b]
[S → .c, b]

[S → a.Sb, b]
[S → .aSb, b]
[S → .c, b]

[S → c., $]

[S → c., b]

[S → aS.b, $] [S → aSb., $]

[S → aS.b, b] [S → aSb., b]

c
a

c

a

c

S b

bS

a

[S' → S., $]S

5

c. (12 points) Write down the grammar and the action and goto tables corresponding to the following
LR(1) parsing DFA.

state 0
[S' → .S, $]
[S → .aA, $]

state 1
[S → a.A, $]
[A → .Bb, $]
[B → .c, b]

a state 4
[S → aA., $]

state 5
[A → B.b, $]

state 6
[A → Bb., $]

state 2
[B → c., b]

c b

B

A

state 3
[S' → S., $]

S

Answer:

S′ → S
0. S → aA
1. A → Bb
2. B → c

action goto
state a b c $ A B S

0 s1 3
1 s2 4 5
2 r2
3 accept
4 r0
5 s6
6 r1

d. (6 points) Write down one production such that, if it were added to the grammar to part c just above,
it would introduce a shift/reduce conflict. Justify your answer by describing which state would change and
how it would exhibit the conflict.

Answer: There are many possible answers. If we add a production S → acb to the grammar,
then we’ll add item [S → .acb, $] to state 0, item [S → a.cb, $] to state 1, and [S → ac.b, $] to
state 2. But then in state 2 upon seeing a b we don’t know whether to shift or reduce.

6

Question 3. Operational semantics (16 points). Consider extending the call-by-value lambda calculus
with exceptions. To keep things simple, we will have one exceptional value, error, that will propagate through
evaluation until caught by a try e with e handler (or until it reaches the top level of the expression).

e ::= v | x | e e | error | try e with e
v ::= n | λx.e

Beta

(λx.e1) v2 → e1[x 7→ v2]

Left
e1 → e′1

e1 e2 → e′1 e2

Right
e2 → e′2

v e2 → v e′2

Err-left
e1 → error

e1 e2 → error

Err-right
e2 → error

v e2 → error

Try-v

try v with e→ v

Try-err

try error with e→ e

Try-ctxt
e1 → e′1

try e1 with e2 → try e′1 with e2

a. (10 points) What is the normal form of try (λx.try x 3 4 with 5) (λy.error) with 6 under these semantics?
Show each step of evaluation to justify your answer. (You need not show the derivations underlying each
step, but do show the final e→ e′ steps.)

Answer:

try (λx.try x 3 4 with 5) (λy.error) with 6→
try (try (λy.error) 3 4 with 5) with 6→

try (try error 4 with 5) with 6→
try (try error with 5) with 6→

try 5 with 6→
5

b. (6 points) Suppose we consider error to be a value, i.e., we modify the production for v to be v ::=
n | λx.e | error. Give a program that could behave differently, and unexpectedly (compared to typical
implementations of exceptions), with this change, and explain your answer.

Answer: If we allow error to be a value, we could pass it as a parameter or return it as a result,
rather than propagating up the call stack. Thus it could potentially be discarded. For example,
this would allow (λx.42) error to be reduced to either error or (unexpectedly) 42, whereas the
latter is not allowed in the original semantics.

(The modified semantics has another oddity—It would also allow try error with e to evaluate to
error.)

7

Question 4. Type checking (22 points). Now consider type checking the language from Question 3.
Here is the language again, with type annotations this time:

e ::= v | x | e e | error | try e with e
v ::= n | λx : t.e
t ::= int | t→ t
A ::= · | x : t, A

Here are the four standard type rules for simply typed lambda calculus.

Int

A ` n : int

Var
x ∈ dom(A)

A ` x : A(x)

Lam
x : t, A ` e : t′

A ` λx : t.e : t→ t′

App
A ` e1 : t→ t′ A ` e2 : t

A ` e1 e2 : t′

a. (10 points) Let B = x : int, y : int → int. What type does λx : int → int.λz : int.x (y z) have
in environment B? Justify your answer by drawing a derivation showing the typing holds. (To save some
writing, you can use i instead of int. Also feel free to introduce new abbreviations, e.g., C, D, E, for
environments, as needed.)

Answer: Let C = x : int→ int, B and let D = z : int, C.

D ` x : int→ int

D ` y : int→ int D ` z : int

D ` y z : int

D ` x (y z) : int

C ` λz : int.x (y z) : int→ int

B ` λx : int→ int.λz : int.x (y z) : (int→ int)→ int→ int

8

b. (6 points) Write down the most general possible type rule for try e1 with e2, and explain briefly why
your rule is correct.

Answer:
A ` e1 : t A ` e2 : t

A ` try e1 with e2 : t

Since we can’t statically predict whether a try expression will evaluation to e1 or e2, we need to
require both to have the same type.

c. (6 points) Write down the most general possible type rule for error, and explain why your rule is correct.
(Hint: think about what type raise exn has in OCaml, for some exception exn.)

Answer:

A ` error : t

We can try error as having any type because it never returns normally—its value always prop-
agates by Err-Left and Err-Right until it reaches the top level, or until it’s caught by try, in
which case the value of the with handler is returned.

9

