
Name:

Midterm 1
CMSC 430

Introduction to Compilers
Fall 2013

October 16, 2013

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 40

3 15

4 25

Total 100

1

Question 1. Short Answer (20 points).

a. (5 points) Briefly explain the difference between bottom-up and top-down parsing.

Answer: A bottom-up parser constructs the parse tree starting from the leaves and working its
way to the root. As a result, bottom-up parsers use productions in “reverse,” as reductions from
the right-hand side to the left-hand side. A top-down parser starts from the root of the parse
tree and works its way down to the leaves. Top-down parsers use productions in the traditional
way, replacing left-hand side nonterminals with the right-hand side.

b. (5 points) In at most a few sentences, explain what it means for a term to be stuck.

Answer: A term is stuck if it is not fully reduced (i.e., not a value) and yet it is impossible to
reduce it more.

2

c. (5 points) Briefly explain what the preservation theorem is.

Answer: The preservation theorem says that if a term is well-typed and it is evaluated one step,
then the resulting term has the same type. More precisely, we showed If · ` e : t and e→ e′ then
· ` e′ : t.

d. (5 points) Here is a simplified version of the json type from Yojson.Safe:

type json = [‘Assoc of (string * json) list

| ‘Int of int

| ‘List of json list]

Write an OCaml function that returns the sum of all the ‘Int elements of the type json above. For example,
for ‘List [‘Int 2; ‘Assoc ["foo’’, ‘Int 3]] it should return 5. You may use any standard OCaml
library functions you like, including the following two:

List.fold_left;;

- : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

List.map;;

- : (’a -> ’b) -> ’a list -> ’b list = <fun>

Answer:

let rec sum = function

| ‘Assoc l -> sum (‘List (List.map snd l))

| ‘Int i -> i

| ‘List l -> List.fold_left (fun a b -> a + (sum b)) 0 l

3

Question 2. Parsing (40 points).

a. (25 points) Consider the following ocamlyacc output:

0 $accept : %entry% $end

1 s : s a B

2 | C

3 a :

4 | A A

5 %entry% : ’\001’ s

state 0

$accept : . %entry% $end (0)

’\001’ shift 1

. error

%entry% goto 2

state 1

%entry% : ’\001’ . s (5)

C shift 3

. error

s goto 4

state 2

$accept : %entry% . $end (0)

$end accept

state 3

s : C . (2)

. reduce 2

state 4

s : s . a B (1)

%entry% : ’\001’ s . (5)

a : . (3)

A shift 5

$end reduce 5

B reduce 3

a goto 6

state 5

a : A . A (4)

A shift 7

. error

vstate 6

s : s a . B (1)

B shift 8

. error

state 7

a : A A . (4)

. reduce 4

state 8

s : s a B . (1)

. reduce 1

i. (5 points) What are the terminals of this grammar, and what are the nonterminals? Exclude the extra
symbols added by ocamlyacc.

Answer: The terminals are A, B, and C. The non-terminals are s and a.

ii. (15 points) Consider the following table showing the sequence of steps taken by the above parser. Fill
in the missing entries in the input and stack columns. Note that the parse starts in state 1, and that the
parse ends upon reduction r1. We’ve put the $end terminal on the end of the input for you.

Stack Input Action

1 [nothing else to fill in] [fill in] CAAB$end s3

1, C, 3 AAB$end r2

1, s, 4 AAB$end s5

1, s, 4, A, 5 AB$end s7

1, s, 4, A, 5, A, 7 B$end r4

1, s, 4, a, 6 B$end s8

1, s, 4, a, 6, B, 8 $end r1

4

iii. (5 points) Write down a production such that, if it were added to the grammar above, ocamlyacc
would report a reduce/reduce conflict. Justify your answer by explaining what state would have a conflict
and why.

Answer: There are many possible answers. For example, adding a duplicate production s→ C
creates a reduce/reduce conflict in state 3, because ocamlyacc can’t decide between the two
possible reductions for C.

b. (15 points) Draw the LR(1) parsing DFA for the following grammar:

S ::= Sab | D
D ::= dD | ε

Answer:

[S' → .S, $]
[S → .Sab, $/a]
[S → .D, $/a]
[D→ .dD, $/a]
[D→ .ε, $/a]

[S'→ S., $]
[S → S.ab, $/a] [S → Sa.b, $/a] [S → Sab., $/a]

[S → D., $/a]

[D→ d.D, $/a]
[D→ .dD, $/a]
[D→ .ε, $/a]

[D→ dD., $/a]

S
a b

D

d

D

d

5

Question 3. Operational semantics (15 points). Consider extending the lambda calculus to include
options:

e ::= v | x | e e | None | Some e | case e of None→ e, Some x→ e
v ::= n | λx.e | None | Some v

Here are the operational semantics rules:

Beta

(λx.e1) v2 → e1[x 7→ v2]

Left
e1 → e′1

e1 e2 → e′1 e2

Right
e2 → e′2

v e2 → v e′2

Case
e0 → e′0

(case e0 of None→ e1,Some x→ e2)→
(case e′0 of None→ e1,Some x→ e2)

Case-None

(case None of None→ e1,Some x→ e2)→ e1

Case-Some

(case Some v of None→ e1,Some x→ e2)→ e2[x 7→ v]

a. (5 points) Following the above small-step rules, reduce the following term to a normal form. Show each
step e→ e′ of reduction, but don’t show the derivations underlying each step. For example, if we asked you
to reduce ((λx.x) (λy.y)) (λz.z), your answer would be:

((λx.x) (λy.y)) (λz.z) →
(λy.y) (λz.z) →

λz.z

Reduce this term:

((λx.case x of None→ (λz.z),Some y → (λw.y)) (Some 42)) 5

Answer:

((λx.case x of None→ (λz.z),Some y → (λw.y)) (Some 42)) 5 →
(case (Some 42) of None→ (λz.z),Some y → (λw.y)) 5 →

(λw.42) 5 →
42

b. (5 points) We left out one operational semantics rule above. Write down the missing rule, along with a
program that cannot be evaluated without it.

Answer: We left out the context rule for Some, and thus we can’t evaluate a program like
Some (λx.x) 5. Here is the rule:

Some
e→ e′

Some e→ Some e′

6

c. (5 points) Write down two big-step operational semantics rules for “case” that are equivalent to the
small-step rules Case, Case-None, and Case-Some. As a reminder, here is a big-step rule for evaluating
function application:

e1 → λx.e e2 → v e[x 7→ v]→ v′

e1 e2 → v′

Answer:

e0 → None e1 → v

(case e0 of None→ e1,Some x→ e2)→ v

e0 → Some v e2[x 7→ v]→ v′

(case e0 of None→ e1,Some x→ e2)→ v′

7

Q
u
e
st
io
n

4
.
T
y
p
e
ch

e
ck

in
g

(2
5

p
o
in
ts
).

N
ow

su
p

p
o
se

w
e

ex
te

n
d

th
e

si
m

p
ly

ty
p

ed
la

m
b

d
a

ca
lc

u
lu

s
to

su
p

p
o
rt

o
p

ti
o
n

s;
th

u
s

w
e

n
ee

d
to

a
d

d
o
p
ti
o
n
ty
pe
s:

e
::

=
v
|x
|e
e
|N

o
n

e
|S

o
m

e
e
|c

a
se
e

o
f

N
o
n

e
→
e,

S
o
m

e
x

:t
→
e

v
::

=
n
|λ
x

:t
.e
|N

o
n

e
|S

o
m

e
v

t
::

=
in
t
|t
→
t
|t

o
p
ti
o
n

A
::

=
·|
x

:t
,A

H
er

e
ar

e
so

m
e

of
th

e
ty

p
e

ru
le

s
fo

r
th

is
la

n
gu

ag
e:

In
t

A
`
n

:
in
t

V
a
r

x
∈
d
o
m

(A
)

A
`
x

:
A

(x
)

L
a
m x

:t
,A
`
e

:
t′

A
`
λ
x

:t
.e

:
t
→
t′

A
p
p

A
`
e 1

:
t
→
t′

A
`
e 2

:
t

A
`
e 1
e 2

:
t′

S
o
m
e
A
`
e

:
t

A
`

S
o
m

e
e

:
t
o
p
ti
o
n

a
.
(1

0
p
o
in
ts
)

F
il

l
in

th
e

ty
p

es
in

th
e

ty
p

in
g

d
er

iv
a
ti

o
n

b
el

ow
.

Y
o
u

w
il

l
n

ee
d

to
d

et
er

m
in

e
w

h
a
t

ty
p

es
t 0

,
t 1

,
a
n

d
t 2

a
re

.
T

o
sa

ve
w

ri
ti

n
g
,

w
ri

te
i

fo
r
in
t

an
d
io

fo
r
in
t
o
p
ti
o
n

.

t 0
=

in
t
o
p
ti
o
n
→

in
t
o
p
ti
o
n

t 1
=

in
t

t 2
=

in
t
o
p
ti
o
n

y
:
t 1
,x

:
t 0
`
x

:
t 0

y
:
t 1
,x

:
t 0
`
y

:
i

y
:
t 1
,x

:
t 0
`

S
o
m

e
y

:
io

y
:
t 1
,x

:
t 0
`
x

(S
o
m

e
y
)

:
io

x
:
t 0
`
λ
y
:t

1
.x

(S
o
m

e
y
))

:
i
→
io

·`
(λ
x

:t
0
.λ
y
:t

1
.x

(S
o
m

e
y
))

:
(i
o
→
io

)
→
i
→
io

z
:
io
`
z

:
io

·`
(λ
z
:t

2
.z

)
:
io
→
io

·`
(λ
x

:t
0
.λ
y
:t

1
.x

(S
o
m

e
y
))

(λ
z
:t

2
.z

)
:
i
→
io

·`
4
2

:
i

·`
(λ
x

:t
0
.λ
y
:t

1
.x

(S
o
m

e
y
))

(λ
z
:t

2
.z

)
4
2

:
io

8

b. (5 points) Write down the most general possible type rule for “None.”

Answer:

A ` None : t option

c. (5 points) Write down the most general possible type rule for “case.”

Answer:
A ` e1 : t1 A ` e2 : t′ x: t, A ` e3 : t′

A ` case e1 of None→ e2,Some x: t→ e3 : t′

d. (5 points) Using the following subset of the grammar that is missing lambda:

e ::= v | x | e e | None | Some e | case e of None→ e, Some x: t→ e
v ::= n | None | Some v
t ::= int | t→ t | t option
A ::= · | x: t, A

write down a term that is ill-typed according to the type rule from part c and yet does not get stuck at run
time.

Answer: There are many possible answers, for example,

case None of None→ 3,Some x→ (3 4)

The type system will assume both branches are possible and report the error on the some branch,
even though that code is not reachable at run time.

Another possible answer is

case None of None→ 3,Some 4→ (λx: int.x)

The type rule above forbids this program because the two branches’ types don’t match, yet the
program above will not get stuck at run time.

9

