Name:

Midterm 1

 $\begin{array}{c} {\rm CMSC} \ 430 \\ {\rm Introduction \ to \ Compilers} \\ {\rm Fall \ 2013} \end{array}$

October 16, 2013

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you shouldn't need to do this at all, so be careful when making assumptions.

Question	Score	Max
1		20
2		40
3		15
4		25
Total		100

Question 1. Short Answer (20 points).

a. (5 points) Briefly explain the difference between *bottom-up* and *top-down* parsing.

b. (5 points) In at most a few sentences, explain what it means for a term to be *stuck*.

c. (5 points) Briefly explain what the *preservation theorem* is.

d. (5 points) Here is a simplified version of the json type from Yojson.Safe:

Write an OCaml function that returns the sum of all the 'Int elements of the type json above. For example, for 'List ['Int 2; 'Assoc ["foo'', 'Int 3]] it should return 5. You may use any standard OCaml library functions you like, including the following two:

List.fold_left;; - : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun> # List.map;; - : ('a -> 'b) -> 'a list -> 'b list = <fun>

Question 2. Parsing (40 points).

a. (25 points) Consider the following ocamlyacc output:

1 2 3 4	<pre>\$accept : %entry% \$end s : s a B</pre>	state 2 \$accept : %entry% . \$end (0) \$end accept	state 5 a : A . A (4) A shift 7 . error
5	/dentry/d : \001 S	state 3	vstate 6
state	0	s : C . (2)	s:sa.B (1)
	<pre>\$accept : . %entry% \$end (0)</pre>	. reduce 2	B shift 8
	'\001' shift 1 . error	state 4	. error
	%entry% goto 2	s : s . a B (1) %entry% : '\001' s . (5)	state 7 a : A A . (4)
state	1 %entry% : '\001' . s (5)	a : . (3) A shift 5	. reduce 4
	C shift 3 . error s goto 4	\$end reduce 5 B reduce 3 a goto 6	state 8 s : s a B . (1) . reduce 1

i. (5 points) What are the terminals of this grammar, and what are the nonterminals? Exclude the extra symbols added by ocamlyacc.

ii. (15 points) Consider the following table showing the sequence of steps taken by the above parser. Fill in the missing entries in the input and stack columns. Note that the parse starts in state 1, and that the parse ends upon reduction r1. We've put the \$end terminal on the end of the input for you.

Stack	Input	Action
1 [nothing else to fill in]	[fill in] \$end	<i>s</i> 3
	\$end	r2
	\$end	<i>s</i> 5
	\$ena	50
	\$end	<i>s</i> 7
	\$end	r4
	\$end	<i>s</i> 8
	\$end	<i>r</i> 1
	UCTUU UCTUU	

iii. (5 points) Write down a production such that, if it were added to the grammar above, ocamlyacc would report a reduce/reduce conflict. Justify your answer by explaining what state would have a conflict and why.

b. (15 points) Draw the LR(1) parsing DFA for the following grammar:

$$\begin{array}{rcl} S & ::= & Sab \mid D \\ D & ::= & dD \mid \varepsilon \end{array}$$

Question 3. Operational semantics (15 points). Consider extending the lambda calculus to include *options*:

$$e ::= v | x | e e | \text{None} | \text{Some } e | \text{case } e \text{ of None} \to e, \text{Some } x \to e$$
$$v ::= n | \lambda x.e | \text{None} | \text{Some } v$$

Here are the operational semantics rules:

$\frac{\text{Beta}}{(\lambda x.e_1) \ v_2 \to e_1[x \mapsto v_2]}$	$\frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2}$	$\frac{e_2 \to e_2'}{v \ e_2 \to v \ e_2'}$	$\begin{array}{c} \overset{\text{CASE}}{\underbrace{e_0 \to e_0'}} \\ \hline (\text{case } e_0 \text{ of None} \to e_1, \text{Some } x \to e_2) \to \\ (\text{case } e_0' \text{ of None} \to e_1, \text{Some } x \to e_2) \end{array}$
CASE-NONE		CASE-SOME	
(case None of None $\rightarrow e_1$,	Some $x \to e_2) \to e_2$	$\overline{(\text{case Some})}$	$e v \text{ of None} \to e_1, \text{Some } x \to e_2) \to e_2[x \mapsto v]$

a. (5 points) Following the above small-step rules, reduce the following term to a normal form. Show each step $e \rightarrow e'$ of reduction, but don't show the derivations underlying each step. For example, if we asked you to reduce $((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z)$, your answer would be:

$$\begin{array}{ccc} ((\lambda x.x) \ (\lambda y.y)) \ (\lambda z.z) & \rightarrow \\ (\lambda y.y) \ (\lambda z.z) & \rightarrow \\ \lambda z.z \end{array}$$

Reduce this term:

 $((\lambda x. \text{case } x \text{ of None} \rightarrow (\lambda z. z), \text{Some } y \rightarrow (\lambda w. y)) \text{ (Some } 42)) 5$

b. (5 points) We left out one operational semantics rule above. Write down the missing rule, along with a program that cannot be evaluated without it.

c. (5 points) Write down two *big-step* operational semantics rules for "case" that are equivalent to the small-step rules CASE, CASE-NONE, and CASE-SOME. As a reminder, here is a big-step rule for evaluating function application:

$$\frac{e_1 \to \lambda x.e}{e_1 e_2 \to v} \frac{e_2 \to v}{e_1 e_2 \to v'}$$

Question 4. Type checking (25 points). No option types: e ::= v v ::= in h ::= in A ::= in	25 points). Now suppose we e ::= v x e e None $v ::= n \lambda x: t.e None$ $t ::= int t \to t t opt$ $A ::= \cdot x: t, A$ or this language: $A ::= \cdot x: t, A$ $A := \cdot x: t, A$ $A := \cdot x: t, A$ in the typing derivation below. $x \in dom(A)$ x : t. $x \in dom(A)$ $A \vdash \lambda$ in the typing derivation below. y: [y: [y: [y: [x: [Now suppose we extend the simple $v \mid x \mid e \in $ None $ $ Some $e \mid case$ $n \mid \lambda x: t.e \mid $ None $ $ Some v $int \mid t \to t \mid t$ option $\cdot \mid x: t, A \mid e = t'$ ge: pm(A) m(A) $x:t, A \vdash e : t'$ $A \vdash \lambda x: t.e : t \to t'$ derivation below. You will need y:	stend the simply typed lambda calculus to Some $e \mid$ case e of None $\rightarrow e$, Some $x: t \rightarrow e$ Some v $\sum_{nn} APP$ APPP APP APPP APPP	Question 4. Type checking (25 points). Now suppose we extend the simply typed lambda calculus to support options: thus we need to add option types: $e := v x e \in None Some v x = v x e \in None Some v x = v x e + t option Some v t = = v x : t , A x : t option Some v t = = v x : t , A t = v x : t , A = v x : t , A = v x : t , A = v x : t , A = v x : t , A = v x : t , A = v x : t , A = v x : t , A = v : t , A = v x : t , A = v : t , A = v x : t , A = v : t , A = v x : t , A = v : t , A = v : t , A = v x : t , A = v $	 ب ب
	$\cdot \vdash (\lambda x)$	$\cdot \vdash (\lambda x: t_0.\lambda y: t_1.x \text{ (Some } y)) (\lambda z: t_2.z):$	$\langle z: t_2.z \rangle:$		$\cdot \vdash 42:$
		$\cdot \vdash (\lambda x: t_0.\lambda y: t_1.x \text{ (Some } y)) (\lambda z: t_2.z) 42:$	ome y)) (λz : $t_2.z$) 4'	2:	

b. (5 points) Write down the most general possible type rule for "None."

c. (5 points) Write down the most general possible type rule for "case."

d. (5 points) Using the following subset of the grammar that is missing lambda:

write down a term that is ill-typed according to the type rule from part c and yet does not get stuck at run time.