
Name:

Midterm 1

CMSC 430
Introduction to Compilers

Fall 2016

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you �nish at least 15 minutes early, bring your exam to the
front when you are �nished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn't need to do this at all, so be careful when making assumptions.

Question Score Max

1 23

2 42

3 35

Total 100

1



Question 1. Short Answer (23 points).

a. (5 points) Brie
y explain what the front-end of a compiler is.

Answer: The front-end is the lexer and parser, i.e., the part of the compiler that concerts a
string of characters into a structured representation such as an abstract syntax tree.

b. (5 points) How are OCaml refs and OCaml records related?

Answer: A ref in OCaml is actually implemented as a record with a single mutable �eld,
contents.

2



c. (5 points) Brie
y explain how LALR(1) parsing and LR(1) parsing are related.

Answer: LALR(1) parsing is the same as LR(1) parsing, except the DFA is compressed. If the
LR(1) parser has two states that share the same core (i.e., the LR(1) items are the same except
for the lookahead), then those states are merged in the LALR(1) parser.

d. (8 points) Recall the following data types from Project 1:

type expr =

EFalse

| ETrue

| EVar of string

| EAnd of expr * expr

| EOr of expr * expr

| ENot of expr

| EForall of string * expr

| EExists of string * expr

type bvec = expr list (* low order bit at head of list *)

Write a function neq : bvec -> bvec -> expr that returns an expression representing whether two
vectors are not equal. You may not call eq. You can assume the two vectors are the same length.

Answer:

let rec neq v1 v2 = match v1, v2 with

| [], [] -> EFalse

| h1::t1, h2::t2 -> EOr(EOr(EAnd(h1, ENot h2), EAnd(ENot h1, h2)), neq t1 t2)

3



Question 2. Parsing (42 points).
a. (12 points) Consider the following grammar and associated parsing table.

0: S0 ! S

1: S ! SaB

2: S ! c

3: B ! b

4: B ! bB

Action Goto
State a b c $ S B

0 s2 1
1 s3 acc

2 r2 r2
3 s4 7
4 r3 s6 r3 5
5 r4 r4
6 r3 r3
7 r1 r1

Fill in the following to show how the string cabbab$ is parsed. You may or may not need to use all the
rows. Add extra rows if necessary.

Stack Input Action

0 cabbab$ s2

0; c; 2 abbab$ r2

0; S; 1 abbab$ s3

0; S; 1; a; 3 bbab$ s4

0; S; 1; a; 3; b; 4 bab$ s6

0; S; 1; a; 3; b; 4; b; 6 ab$ r3

0; S; 1; a; 3; b; 4; B; 5 ab$ r4

0; S; 1; a; 3; B; 7 ab$ r1

0; S; 1 ab$ s3

0; S; 1; a; 3 b$ s4

0; S; 1; a; 3; b; 4 $ r3

0; S; 1; a; 3; B; 7 $ r1

0; S; 1 $ acc

$

$

4



b. (25 points) Draw the LR(1) parsing DFA for the following grammar:

S ! aBCa j B
B ! b

C ! " j Cc

Answer:

S’ → .S, $
S → .aBCa, $
S → .B, $
B → .b, $

S → a.BCa, $
B → .b, a/c

S → aB.Ca, $
C → ., a/c
C → .Cc, a/c

S → aBC.a, $
C → C.c, a/c

S → aBCa., $ C → Cc., a/c
S’ → S., $ S → B., $

B → b., $

a

S B

b
B

B → b., a/c

C

c
a

b

5



c. (5 points) I had some trouble solving Project 2. At one point, running ocamlyacc -v showed the
following (partial) output:

1 main : EOF
2 j bexpr EOF
3 bexpr : ID
4 j bexpr AND bexpr

state 1
%entry% : 'n001' . main (5)

EOF shift 3
ID shift 4
. error

main goto 5
bexpr goto 6

state 3
main : EOF . (1)

. reduce 1

state 4
bexpr : ID . (3)

. reduce 3

state 6
main : bexpr . EOF (2)
bexpr : bexpr . AND bexpr (4)

EOF shift 7
AND shift 8
. error

state 7
main : bexpr EOF . (2)

. reduce 2

state 8
bexpr : bexpr AND . bexpr (4)

ID shift 4
. error

bexpr goto 9

9: shift/reduce con
ict
(shift 8, reduce 4) on AND
state 9
bexpr : bexpr . AND bexpr (4)
bexpr : bexpr AND bexpr . (4)

AND shift 8
EOF reduce 4

I need help understanding what's wrong. Write down an input that will cause the parsing DFA to reach
state 9 and have to choose between the shift and the reduce that are in con
ict. Then, brie
y explain what
problem with the grammar causes the con
ict in that state.

Answer: ID AND ID AND ID EOF will reach state 9 and exhibit the con
ict (note that ID AND

ID EOF reaches state 9, but the lookahead will be EOF and hence it will not trigger the con
ict).
The problem with the grammar is that it's ambiguous: it allows conjunctions to be associate
either to the left or right.

6



Question 3. Operational Semantics (35 points).
a. (10 points) Here are partial big-step operational semantics for boolean expressions.

b ::= bv j X j :b j b ^ b j b _ b

bv ::= true j false

where X 2 Var ranges over boolean values true and false, and a program state � : Var ! bv maps variables
to boolean values.

True

htrue; �i ! true

False

hfalse; �i ! false

Var

hX;�i ! �(X)

And

hb1; �i ! bv1 hb2; �i ! bv2
bv = bv1 ^ bv2

hb1 ^ b2; �i ! bv

Or

hb1; �i ! bv1 hb2; �i ! bv2
bv = bv1 _ bv2

hb1 _ b2; �i ! bv

Draw a derivation showing that hX ^ (Y _ false)); �i ! true if � = [X 7! true; Y 7! true]. Label each step
of the derivation with the operational semantics rule used.

Answer:

And

Var
hX;�i ! true

Or

Var
hY; �i ! true

False
hfalse; �i ! false

hY _ false; �i ! true

hX ^ (Y _ false)); �i ! true

b. (5 points) One big-step rule is missing. Write it down.

Answer:
Neg

hb; �i ! bv bv0 = :bv

h:b; �i ! bv0

7



c. (8 points) Here are partial small-step semantics rules for the same language:

Var

�(X) = bv

X !� bv

L-And

b1 !� b0
1

b1 ^ b2 !� b0
1
^ b2

T-And

true ^ b!� b

F-And

false ^ b!� false

L-Or

b1 !� b0
1

b1 _ b2 !� b0
1
_ b2

T-Or

true _ b!� true

F-Or

false _ b!� b

Show that X ^ (Y _ false))!�

�
true if � = [X 7! true; Y 7! true]. Show each step of the reduction, but you

don't need to show the derivations that lead to the individual steps, just the steps themselves. (The relation
b!�

�
b0 means b reaches b0 in zero or more steps of !�.)

Answer:
X ^ (Y _ false)) !� true ^ (Y _ false))

!� Y _ false
!� true _ false
!� true

d. (7 points) Suppose we extend the grammar to include implication: b ::= ::: j b ) b. Write down the
corresponding small-step rules, following the pattern in part c, using the normal interpretation of logical
implication.

Answer:

L-Imp

b1 !� b0
1

(b1 ) b2)!� (b0
1
) b2)

T-Imp

(true) b)!� b

F-Imp

(false) b)!� true

8



e. (5 points) Brie
y explain what a normal form is in small-step operational semantics. What are the
normal form(s) of the semantics in part c?

Answer: A normal form is a term that cannot be reduced any further. The normal forms in the
operational semantics just above are true and false.

9


