
Name:

Directory ID:

University ID:

Midterm 1
CMSC 430

Introduction to Compilers
Fall 2018

Instructions

This exam contains 12 pages, including this one. Make sure you have all the pages. Write
your name, directory ID, and university ID number on the top of this page, and write your
directory ID at the bottom left of every page, before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 30

2 35

3 35

Total 100

Question 1. Short Answer (30 points).

a. (3 points) What do the letters L, R, and K refer to in LR(K) parsing terminology?

Answer:
L – consume input left to right
R – produces a rightmost derivation
K – lookahead K tokens

b. (1 point each) Circle true or false for each statement.

(i.) If a given grammar is LR(1) it is also LR(0). true false

(ii.) If a given grammar is LR(0) it is also SLR(1). true false

(iii.) If a given grammar is LR(1) it is also LALR(1). true false

(iv.) It is possible for a grammar to be LL(1) but not LR(1) true false

(v.) Ocamlyacc is a parser generator for LR(1) grammars true false

Answer: (i.) false, (ii.) true, (iii.) false, (iv.) false, (v.) false

c. (6 points) Briefly describe what a language virtual machine is and give two reasons why a language
developer might implement one.

Answer: A language virtual machine is a software implementation of a low-level, concrete
machine interpreter. It is often used as the target for a compiler from a higher-level language.
Virtual machines are useful because they abstract low-level details of real hardware, thereby
allowing the compiler writer to focus on generating code that is portable across any platform
for which the VM runtime has been implemented. It also provides a convenient platform for
implementing different front-end languages that will execute, and interoperate, on a common,
portable runtime. Additionally, the bytecode semantics may be closer to the higher-level language
than a real machine, thereby simplifying the translation that is required by the compiler. For
example, the JVM bytecode operates directly on objects and methods, which are typically not
abstractions that are present in physical processors.

d. (2 points) Briefly describe one difference (other than syntactic) between polymorphic and non-polymorphic
variants in OCaml.

Answer:

• With polymorphic variants, you do not need to specify all possible tags a priori.

• With polymorphic variants, you can reuse the same tag in different type definitions.

Directory ID: 2 CMSC430, Fall 2018, Midterm 1

e. (1 point) What data structure or internal representation (IR) does a parser typically produce?

Answer: Abstract Syntax Tree

f. (2 points) In project 2, during which phase of the compiler were comments removed?

Answer: Lexer

g. (4 points) Briefly list two techniques to resolve an ambiguous grammar so that it can be parsed with
ocamlyacc.

Answer:

• Operator associativity (e.g., %left)

• Rewrite the grammar so it is not ambiguous, e.g., by adding more non-terminals

• Specifying operator precedence via directives.

h. (2 points) In class, we studied the big-step semantics for the IMP language. Arithmetic expressions
evaluate to numbers. Boolean expressions evaluate to boolean values (true or false). What kind of values
do commands evaluate to in the big step semantics? As a reminder, the grammar for IMP is:

a ::= n | X | a+ a | a− a | a× a
b ::= true | false | a = a | a ≤ a | ¬b | b ∧ b | b ∨ b
c ::= skip | X := a | c; c | if b then c else c | while b do c

Answer: A new state (sigma).

Directory ID: 3 CMSC430, Fall 2018, Midterm 1

i. (5 points) Complete the grammar rules (inside the curly braces) in the following calc.mly file such that
the main function returns the evaluated expression. Then, make the changes necessary to add support for
subtraction.

/* calc.mly */

%token <int> INT

%token EOL PLUS LPAREN RPAREN

%start main

%type <int> main

%%

main:

| expr EOL { }

expr:

| term { }

| expr PLUS term { }

term:

| INT { }

| LPAREN expr RPAREN { }

Directory ID: 4 CMSC430, Fall 2018, Midterm 1

Question 2. Parsing (35 points).
a. (15 points) Consider the following grammar and associated parsing table.

0. S → E$
1. E → E + T
2. E → T
3. T → n
4. T → (E)

Action Goto
State $) (n + S T E

0 s5 s4 3 2 1
1 r0 s7
2 r2 r2 r2
3 acc
4 r3 r3 r3
5 s5 s4 2 6
6 s9 s7
7 s5 s4 8
8 r1 r1 r1
9 r4 r4 r4

Fill in the following table to show how the string (7) + (1 + +4)$ is parsed. Note that the input is not
valid with respect to the grammar. Complete the table until you reach a parser error and clearly indicate
where the error is detected. You may or may not need to use all the rows. Add extra rows if necessary.

Stack Input Action

0 (7) + (1 + +4)$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

Directory ID: 5 CMSC430, Fall 2018, Midterm 1

b. (15 points) Construct the LR(1) DFA for the following grammar:

0. S → E$
1. E → T
2. T → (E)
3. T → n

Answer:

c. (5 points) Briefly describe the difference between an LR(1) DFA and an LALR(1) DFA. Give an example
from your LR(1) DFA above.

Answer: An LALR(1) DFA has fewer states than an LR(1) DFA because the former merges
states from the latter where the core items are identical but the lookaheads are different. In the
above example, states 5 and 9 can be combined because they contain the same core items T ->

n . but different lookaheads. The resulting state has the same item twice, with both possible
lookaheads (“)” and “$”). States 11/12, 4/8, 6/10, and 2/7 can also be combined. The resulting
DFA looks like this:

Directory ID: 6 CMSC430, Fall 2018, Midterm 1

Question 3. Operational Semantics (35 points).
a. (10 points) Here are partial big-step operational semantics for arithmetic expressions

a ::= n | X | a+ a | a− a

where X ∈ Var ranges over variables, and a program state σ : Var→ n maps variables to integers n.

Int

〈n, σ〉 → n

Var

〈X,σ〉 → σ(X)

Plus
〈a1, σ〉 → n 〈a2, σ〉 → m p = n+m

〈a1 + a2, σ〉 → p

Minus
〈a1, σ〉 → n 〈a2, σ〉 → m p = n−m

〈a1 − a2, σ〉 → p

Draw a derivation showing that 〈(X + 5)− (Y − 2), σ〉 → 5 if σ = [X 7→ 6, Y 7→ 8].

Answer:

〈X,σ〉 → 6 〈5, σ〉 → 5
11 = 6 + 5

〈X + 5, σ〉 → 11

〈Y, σ〉 → 8 〈2, σ〉 → 2
6 = 8− 2

〈Y − 2, σ〉 → 6
5 = 11− 6

〈(X + 5)− (Y − 2), σ〉 → 5

Directory ID: 7 CMSC430, Fall 2018, Midterm 1

b. (8 points) Here are partial small-step semantics rules for the same language:

Var
σ(X) = n

X →σ n

Right+

a2 →σ a
′
2

n+ a2 →σ n+ a′2

Left+

a1 →σ a
′
1

a1 + a2 →σ a
′
1 + a2

Plus
p = n+m

n+m→σ p

Write the missing rules for subtraction. Your rules should evaluate the right-hand side before the
left-hand side.

Answer:
Right-

a2 →σ a
′
2

a1 − a2 →σ a1 − a′2

Left-
a1 →σ a

′
1

a1 − n→σ a
′
1 − n

Minus
p = n−m
n−m→σ p

c. (5 points) Show that (X + 5)− (Y − 2)→∗σ 5 by showing each step of the reduction, where σ = [X 7→
6, Y 7→ 8]. You don’t need to show the derivations that lead to the individual steps, just the steps themselves.
(The relation a→∗σ a′ just means a gets to a′ in zero or more steps of →σ.)

Answer:
(X + 5)− (Y − 2) →σ (X + 5)− (8− 2)

→σ (X + 5)− 6
→σ (6 + 5)− 6
→σ 11− 6
→σ 5

d. (2 points) The following is an OCaml type definition for arithmetic expressions. Construct an OCaml
expression that represents the abstract expression (X + 5)− (Y − 2).

type aexpr =

| Int of int

| Var of string

| Plus of aexpr * aexpr

| Minus of aexpr * aexpr

Answer:

Minus(Plus(Var "X", Int 5), Minus(Var "Y", Int 2))

Directory ID: 8 CMSC430, Fall 2018, Midterm 1

e. (5 points) Write an OCaml function aeval that evaluates arithmetic expressions using the above big
step semantics and aexpr type definition. Also write the type signature for your function. Use association
lists to represent σ (i.e., type sigma = (string*int) list). You may use standard library functions, if
necessary.

Answer:

val aeval : aexpr -> (string*int) list -> int

let rec aeval a s =

match a with

| Int n -> n

| Var x -> List.assoc x s

| Minus(a0,a1) -> (aeval a0 s) - (aeval a1 s)

| Plus(a0,a1) -> (aeval a0 s) + (aeval a1 s)

Directory ID: 9 CMSC430, Fall 2018, Midterm 1

f. (5 points) Write an OCaml function aevals that evaluates arithmetic expressions using the above
small step semantics (including your extension) and aexpr type definition. Also write the type signature for
your function. Use association lists to represent σ (i.e., type sigma = (string*int) list). You may use
standard library functions, if necessary.

Answer:

val aeval : aexpr -> (string*int) list -> aexpr

let rec aeval a s =

match a with

| Int x -> Int x

| Var x -> Int(List.assoc x s)

| Minus(Int n, Int m) -> Int(n-m)

| Minus(a0, Int n) -> Minus((aeval a0 s), Int n)

| Minus(a0, a1) -> Minus(a0, (aeval a1 s))

| Plus(Int n, Int m) -> Int(n+m)

| Plus(Int n, a1) -> Plus(Int n, (aeval a1 s))

| Plus(a0, a1) -> Plus((aeval a0 s), a1)

Directory ID: 10 CMSC430, Fall 2018, Midterm 1

This page is intentionally blank for extra work space. If you want the work on this page to count, clearly
label which question you are answering and write “see back page” in the answer space for the question.

Directory ID: 11 CMSC430, Fall 2018, Midterm 1

This page is intentionally blank for extra work space. If you want the work on this page to count, clearly
label which question you are answering and write “see back page” in the answer space for the question.

Directory ID: 12 CMSC430, Fall 2018, Midterm 1

