
Name:

(Practice) Midterm 1
CMSC 430

Introduction to Compilers
Spring 2015

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 25

2 30

3 35

Total 90

1

Question 1. Short Answer (25 points).

a. (5 points) Briefly explain the difference between a small step semantics and big step semantics.

Answer: A big step semantics is a relation between programs and values that captures the
notion of “evaluation”. A small step semantics is relation between programs and programs that
captures the notion of “reduces in one step”. The latter is useful for reasoning about the steps
of computation a program goes through, including programs that error (get “stuck”) and run
forever.

b. (5 points)What’s the difference between an ahead-of-time compiler and a just-in-time compiler? Explain
in at most 1-2 sentences.

Answer: An ahead-of-time compiler translates a program into an equivalent program (in a
potentially different language) in a single batch operation. A just-in-time compiler runs the
program directly as in an interpreter, but compiles code on the fly as needed and using information
gained while running the program.

2

c. (5 points) In at most a few sentences, explain what it means for a compiler to be correct?

Answer:

A compiler from language L1 to L2 is correct if it translates a program P written in L1 to a
program Q in L2 such that interpreting Q produces an answer equivalent to interpreting P .

d. (5 points) Why do compilers sometimes need to introduce temporary variables when translating to an
intermediate representation?

Answer: If the IR is three-address code, then temporary variables are needed to hold interme-
diate computation results when executing complex expressions.

3

e. (5 points) Give three-address code equivalent to the following Imp program:

n := 2;

m := 64;

r := 1;

while (m > 0) {
s := r

t := 0

while (s > 0) {
t := t + n;

s := s − 1;

}
r := t ;

m := m − 1;

}

Answer:

1: n := 2

2: m := 64

3: r := 1

4: if m <= 0 goto 14

5: s := r

6: t := 0

7: if s <= 0 goto 11

8: t := t + n

9: s := s − 1

10; goto 7

11: r := t

12: m := m − 1

13: goto 4

14: skip

4

Question 2. Miscellaneous (40 points).

a. (10 points)
Below is a small step operation semantics for boolean expressions that “short-circuits” evaluation—it

does not reduce sub-expression that are unneeded:

bv ::= true | false
b ::= bv | b ∧ b | b ∨ b | ¬b

true ∨ b → true
OrTrue

false ∨ b → b
OrFalse

true ∧ b → b
AndTrue

false ∧ b → false
AndFalse

b1 → b′1
b1 ∧ b2 → b′1 ∧ b2

AndStep
b1 → b′1

b1 ∨ b2 → b′1 ∨ b2
OrStep

¬true → false
NegTrue

¬false → true
NegFalse

b → b′

¬b → ¬b′
NegStep

Define a grammar of contexts, C, such that the following rule can replace some of the above rules. List
the names of rules it replaces.

b → b′

C[b] → C[b′]
Context

Answer:
C ::= [] | C ∧ b | C ∨ b | ¬C

5

b. (10 points) Here is a grammar, give a deriviation showing that abbcd is in the language A:

A → aBd
B → bB
B → ε
B → c

Answer:
A → aBd → abBd → abbBd → abbcd

6

c. (10 points) Here is a program in IR for computing the double factorial of 5 (5!!):

0: d := 2

1: n := 5

2: if (d=0) goto 11

3: f := 1

4: if (n=0) goto 8

5: f := n * f

6: n := n - 1

7: goto 4

8: d := d - 1

9: n := f

10: goto 2

11: r := f

Draw the control flow graph for this program.

Answer:

d := 2
n :=5

d = 0

f := 1

n = 0

f := n * f
n := n - 1

d := d - 1
n := f

r := f

7

Question 3. Operational semantics (35 points). Consider lambda calculus extended with integers
and updatable references. (Here ℓ (“location”) is a pointer, and a store S maps locations to values.)

v ::= n | λx.e | ℓ
e ::= v | x | e e | ref e | !e | e1 := e2
S ::= ∅ | S[ℓ 7→ v]

Here is most of an operational semantics for this language:

Beta

⟨S, (λx.e1)v2⟩ → ⟨S, e1[x 7→ v2]⟩

AppL
⟨S, e1⟩ → ⟨S′, e′1⟩

⟨S, e1 e2⟩ → ⟨S′, e′1 e2⟩

AppR
⟨S, e2⟩ → ⟨S′, e′2⟩

⟨S, v e2⟩ → ⟨S′, v e′2⟩

Ref
ℓ ̸∈ dom(S) S′ = S[ℓ 7→ v]

⟨S, ref v⟩ → ⟨S′, ℓ⟩

RefIn
⟨S, e⟩ → ⟨S′, e′⟩

⟨S, ref e⟩ → ⟨S′, ref e′⟩

Assign
S′ = S[ℓ 7→ v]

⟨S, ℓ := v⟩ → ⟨S′, v⟩

AssignL
⟨S, e1⟩ → ⟨S′, e′1⟩

⟨S, e1 := v⟩ → ⟨S′, e′1 := v⟩

AssignR
⟨S, e2⟩ → ⟨S′, e′2⟩

⟨S, e1 := e2⟩ → ⟨S′, e1 := e′2⟩

a. (5 points) In this semantics, is the left-hand side of an assignment evaluated first; is the right-hand side
evaluated first; or is the choice non-deterministic? Explain your answer briefly.

Answer: The right-hand side is evaluated first, as can be seen in Rule AssignL, which requires
the right hand side be fully evaluated.

b. (10 points) Let ∅ be the empty store. Show a derivation that in this operational semantics, the reduction
at the bottom holds. (You can draw your derivation up, above the reduction.)

Answer:
⟨∅, ref 42⟩ → ⟨[ℓ 7→ 42], ℓ⟩

⟨∅, (λx.x) (ref 42)⟩ → ⟨[ℓ 7→ 42], (λx.x) ℓ⟩
⟨∅, ((λx.x) (ref 42)) (λz.z)⟩ → ⟨[ℓ 7→ 42], ((λx.x) ℓ) (λz.z)⟩

⟨∅, ((λx.x) (ref 42)) (λz.z)⟩ → ⟨[ℓ 7→ 42], ((λx.x) ℓ) (λz.z)⟩

8

c. (10 points) Evaluate the following configuration until no more reductions are possible. For this part,
just show the reduction steps and not the derivations of the steps. Use ℓ1, ℓ2, ℓ3, etc if you need more
locations. (Note this example will use a pointer to a pointer, which is allowed.)

⟨∅, ((λx.x)(ref 42)) := ((λy.λz.y) (ref 43) 44)⟩ →

Answer:
⟨[ℓ1 7→ 43], ((λx.x)(ref 42)) := ((λy.λz.y) ℓ1 44)⟩ →

⟨[ℓ1 7→ 43], ((λx.x)(ref 42)) := ((λz.ℓ1) 44)⟩ →
⟨[ℓ1 7→ 43], ((λx.x)(ref 42)) := ℓ1⟩ →

⟨[ℓ1 7→ 43, ℓ2 7→ 42], ((λx.x)ℓ2) := ℓ1⟩ →
⟨[ℓ1 7→ 43, ℓ2 7→ 42], ℓ2 := ℓ1⟩ →

⟨[ℓ1 7→ 43, ℓ2 7→ ℓ1], ℓ1⟩

d. (10 points) Write the missing operational semantics rule(s) for dereference (written !e).

Answer:

Deref

⟨S, ref ℓ⟩ → ⟨S, S(ℓ)⟩

DerefIn
⟨S, e⟩ → ⟨S′, e′⟩
⟨S, !e⟩ → ⟨S′, !e′⟩

9

