
Name:

Midterm 1
CMSC 430

Introduction to Compilers
Spring 2012

March 14, 2012

Instructions

This exam contains 8 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 32

2 34

3 34

Total 100

1

Question 1. Short Answer (32 points).

a. (8 points) In at most 3 sentences, explain the difference between a compiler front-end and a compiler
back-end.

Answer: The front-end of the compiler is responsible for lexing and parsing, and the back-end
of the compiler is responsible for code generation.

b. (8 points) As part of project 2, you extended Rube to include type annotations for fields and local
variables. However, fields and local variables included no explicit initialization. But then, how can Rube
initialize fields and local variables to ensure their initial values are type safe? Explain your answer briefly.

Answer: Fields and local variables can be safely initialized with nil, since the type ⊥ of nil is
a subtype of all other types.

2

c. (8 points) Explain briefly what a basic block is.

Answer: A basic block is a sequence of instructions with no branches from it except from the
last statement, and no branches into it except to the beginning of the block.

d. (8 points) In project 1, we allowed dimensional quantities to be converted between units. In project
2, we included subtyping so that subtypes could be used where supertypes were expected. Compare and
contrast these two ideas. In what ways are they similar, and how are they different? Give at least one
similiarity and one difference. Write at most a few sentences.

Answer: There are many possible answers.

• Both ideas allow values of different kinds to be converted to or from each other.

• In project 1, we only had explicit casts, whereas in project 2 subtyping could be used both
explicitly and implicitly.

• In subtyping, one direction is always valid (sub- to supertype), and the other direction may
not be valid. With unit conversion, both directions of conversion are always possible.

• Subtyping in project 2 relates many different types, whereas by design, in project 1 we only
converted to or from SI base units.

3

Question 2. Parsing (34 points). Consider the grammar for the lambda calculus, which we can write
down with the following .mly file (actions omitted):

...

%%

expr:

| ID (* variable; production 1 *)

| LAM ID DOT expr (* function binding; production 2 *)

| expr expr (* function application; production 3 *)

;

a. (4 points) List all the tokens that are referred to in the grammar.

Answer: LAM, ID, and DOT.

b. (10 points) Suppose we defined the following data type for abstract syntax trees for lambda calculus:

type expr =

| Var of string

| Lam of string * expr

| App of expr * expr

Fill in the actions for the lambda calculus grammar so that the parser will generate abstract syntax trees
of type expr.

...

%%

expr:

| ID { }

| LAM ID DOT expr { }

| expr expr { }

;

Answer:

expr: ID { Var($1) } | LAM ID DOT expr { Lam($2, $4) } | expr expr { App($1, $2) }

4

c. (15 points) Following is the (slightly simplified) .output file produced when we run ocamlyacc on this
grammar. We’ve numbered the productions above to correspond with how the productions are referred to
in the output file:

state 1
%entry% : . expr (4)

ID shift 3
LAM shift 4
. error

expr goto 5

state 3
expr : ID . (1)

. reduce 1

state 4
expr : LAM . ID DOT expr (2)

ID shift 6
. error

state 5
expr : expr . expr (3)
%entry% : expr . (4)

ID shift 3
LAM shift 4
$end reduce 4

expr goto 7

state 6
expr : LAM ID . DOT expr (2)

DOT shift 8
. error

state 7
shift/reduce conflict
(shift 3, reduce 3) on ID
(shift 4, reduce 3) on LAM
expr : expr . expr (3)
expr : expr expr . (3)

ID shift 3
LAM shift 4
$end reduce 3

expr goto 7
state 8
expr : LAM ID DOT . expr (2)

ID shift 3
LAM shift 4
. error

expr goto 9

state 9
shift/reduce conflict
(shift 3, reduce 2) on ID
(shift 4, reduce 2) on LAM
expr : LAM ID DOT expr . (2)
expr : expr . expr (3)

ID shift 3
LAM shift 4
$end reduce 2

expr goto 7

5

Fill in the following table to show the steps taken to parse the input string LAM ID DOT ID $end. That
is, on each row list (a) the state stack, with the top of the stack on the left; (b) the input with a “.” indicating
what input characters have been scanned and which remain to be scanned; and (c) the action that leads to
the next state stack; an action should either be “shift” or “reduce n”, where n is a production number. Stop
filling out the table when you reach the action “reduce 4”. We’ve filled out some of the table to get you
started. (Note that there may or may not be some extra rows in the table.)

State stack Input Action
1 . LAM ID DOT ID $end shift

4, 1 LAM . ID DOT ID $end

d. (5 points) The parser generated from this grammar has shift/reduce conflicts in state 7. What specific
problem with the grammar is exhibited by these conflicts? The parser generator has resolved the conflict by
shifting on ID or LAM ; will this resolution lead to correct parsing, according to the conventions of lambda
calculus? Explain.

Answer: The conflicts in state 7 are due to ambiguity in the grammar, because we have not spec-
ified the associativity of function application. In this case, shifting is incorrect, as it corresponds
to right associativity, whereas in lambda calculus, function application should be left-associative.

6

Question 3. Operational semantics and type checking (34 points). Consider extending the simply
typed lambda calculus to include lists and a corresponding type:

e ::= n | x | λx.e | e e | [] | e :: e | hd e | tl e
t ::= int | t list | t→ t
A ::= · | x : t, A

Here [] is the empty list; e1 :: e2 creates a list with head e1 and tail e2; the expression hd e returns the head
of list e; and the expression tl e returns the tail of list e. The type t list is the type of a list whose elements
have type t.

Here are the type rules for this language:

Int

A ` n : int

Var
x ∈ dom(A)

A ` x : A(x)

Lam
x : t, A ` e : t′

A ` λx.e : t→ t′

App
A ` e1 : t→ t′ A ` e2 : t

A ` e1 e2 : t′

Nil

A ` [] : t list

List
A ` e1 : t A ` e2 : t list

A ` e1 :: e2 : t list

Hd
A ` e : t list

A ` hd e : t

Tl
A ` e : t list

A ` tl e : t list

a. (10 points) Write down a derivation that shows · ` (λx.λy.x :: tl y) : int→ int list→ int list.

Answer:

y : int list, x : int ` x : int

y : int list, x : int ` y : int list

y : int list, x : int ` tl y : int list

y : int list, x : int ` (x :: tl y) : int list

x : int ` (λy.x :: tl y) : int list→ int list

· ` (λx.λy.x :: tl y) : int→ int list→ int list

b. (4 points) Consider the following operational semantics rule:

hd (e1 :: e2)→ e2

Show that this rule is incorrect by showing that using it will cause Preservation to be violated, i.e., give
an expression e such that A ` e : t and e→ e′ but A 6` e′ : t. Explain your answer briefly, and explain how
to fix the above rule.

Answer: Consider hd (1 :: []). This expression has type int, but if we evaluate it one step using
the above rule, the result is [], which has type int list. The rule should have e1 on the right-hand
side of the arrow.

7

c. (10 points) Suppose we were to add floating point numbers to our language, with appropriate subtyping
rules:

e ::= f | n | x | λx.e | e e | [] | e :: e | hd e | tl e
t ::= float | int | t list | t→ t

Refl

t ≤ t
Sub-base

int ≤ float

Sub-fun
t2 ≤ t1 t′1 ≤ t′2
t1 → t′1 ≤ t2 → t′2

Sub-list
t1 ≤ t2

t1 list ≤ t2 list

For each of the following subtyping relationships, write “yes” or “no” to indicate whether or not the
relationship holds according to the rules above.

int ≤ int

float ≤ int

int list list ≤ float list list

int→ float ≤ float→ float

int→ int→ int ≤ float→ int→ float

d. (10 points) Write down an OCaml data type typ and a function is subtype t1 t2 : typ ->

typ -> bool that returns true iff and only t1 is a subtype of t2 according to the rules above.

Answer:

type typ = TFloat | TInt | TList of typ | TFun of typ * typ

let rec is_subtype t1 t2 = match t1, t2 with

| TFloat, TFloat | TInt, TInt | TInt, TFloat -> true

| TList t1, TList t2 -> is_subtype t1 t2

| TFun (t1, t1’), TFun(t2, t2’) ->

(is_subtype t2 t1) && (is_subtype t1’ t2’)

| _ -> false

8

