
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Fall 2012

November 28, 2012

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 14

3 30

4 12

5 24

Total 100

1

Question 1. Short Answer (20 points).

a. (6 points) Briefly explain what a basic block is.

Answer: A basic block is a sequence of statements such that (a) there are no jumps from the
basic block except after its last statement and (b) there are no jumps into the basic block except
to its initial statement.

b. (7 points) Briefly explain what state transformation is in dynamic software updating and why it may
be needed.

Answer: State transformation is the process of modifying the application state to be compatible
with a new program version. State transformation is needed because often code updates code
with data representation and type changes.

2

c. (7 points) Briefly explain what a time travel debugger is.

Answer: Typical interactive debuggers allow the developer to set breakpoints and then, when-
ever execution is stopped, inspect the program state at that point. A time-travel debugger
additionally allows the developer to inspect past program states. (A canonical operation in a
time-travel debugger is “step backwards,” which runs execution one step in reverse.)

3

Question 2. Subtyping (14 points). Suppose that int is a subtype of float. To save writing, let’s write
i for int and f for float.

a. (7 points) Write down every type t such that t ≤ (i→ i→ f), following standard subtyping rules. Hint:
It may be easiest to write down everything that could possibly be a subtype and then cross out the ones that
aren’t subtypes.

Answer:

i→ i→ i
i→ i→ f
i→ f → i
i→ f → f

b. (7 points) In class, we argued it would be unsound to allow int ref ≤ float ref. Demonstrate the issue
by writing down, in OCaml notation, a program that would type check under this subtyping rule but that
would “go wrong” with a type error at run-time. Explain your answer very briefly.

Answer:

let (x:int ref) = ref 0 in

let (y:float ref) = x in

y := 3.0;

x + 1 (* uh oh! integer arithmetic on a float *)

4

Question 3. Interval Analysis (30 points). In this question, we will develop an interval analysis,
which, for each variable x at each program point, determines a closed interval [a, b] such that the run-time
value of x is guaranteed to be in the interval [a, b]. We also allow a and b to be −∞ and ∞, respectively, in
case we cannot bound the interval on one or both sides. Use ∅ for the empty inverval. For example, here is
a CFG annotated with the intervals determined after each statement (empty intervals omitted):

x := 42

x := x + 3 x := 5

y := x - 1

x := x - 1

x ∈ [42, 42]

x ∈ [5, 5]x ∈ [45, 45]

x ∈ [5, 45], y ∈ [4, 44]

y := y + 1 z := x + y

x ∈ [-∞, 44], y ∈ [4, ∞]

x ∈ [-∞, 44], y ∈ [4, ∞] x ∈ [-∞, 44], y ∈ [4, ∞], z ∈ [-∞, ∞]

Note that we have left out any conditional tests; as is usual in dataflow analysis, your analysis should
always assume all branches could be taken.

a. (5 points) Should the analysis be forward or backward?

Answer: Forward.

b. (5 points) What should the initial facts be at the entry or exit of the program? (You can explain in
words.)

Answer: Every variable should be mapped to the empty interval.

c. (5 points) What should > be in the lattice? (You can explain in words.)

Answer: Every variable should be mapped to the interval [−∞,∞].

5

d. (5 points) Suppose that on one incoming edge to a join point, x ∈ [a, b], and on another incoming edge
to the same point, x ∈ [c, d]. What should (x ∈ [a, b]) u (x ∈ [c, d]) be defined as?

Answer: x ∈ [min(a, c),max(b, d)].

e. (5 points) Suppose x ∈ [a, b] just prior to each of the following statements. Write down the new dataflow
fact x ∈ [c, d] after the statements:

i. x := 42

Answer: x ∈ [42, 42]

ii. x := x + 1

Answer: x ∈ [a + 1, b + 1]

iii. x := 4 - x

Answer: x ∈ [−b + 4,−a + 4]

f. (5 points) If we implement the usual dataflow analysis algorithm, is the algorithm guaranteed to
terminate? Why or why not?

Answer: No, it’s not guaranteed to terminate because this lattice does not have finite height.

6

Question 4. Data flow analysis (12 points). Here is the control-flow graph from the last problem again,
this time with numbers for each statement:

1. x := 42

2. x := x + 3 3. x := 5

4. y := x - 1

5. x := x - 1

6. y := y + 1 7. z := x + y

a. (6 points) Write down the sets of live variables at the beginning of each statement. Write ∅ for the
empty set, if necessary.

Stmt Live variables at beginning of stmt

1

2

3

4

5

6

7

b. (6 points) Write down the sets of reaching definitions at the end of each statement. Write ∅ for the
empty set, if necessary.

Stmt Reaching definitions at end of stmt

1

2

3

4

5

6

7

7

Question 5. Code generation and register allocation (24 points). Below is a snippet of
08-codegen-2.ml from class, showing the input expression language, the “bytecode” instruction language,
and compilation. We’ve made two small changes: We renamed ‘L Register to ‘L Reg to save some writing;
and we removed reads and writes through pointers and identifiers.

type expr =

| EInt of int

| EAdd of expr ∗ expr

| ESub of expr ∗ expr

| EMul of expr ∗ expr

| EIfZero of expr ∗ expr ∗ expr

type reg = [‘L Reg of int]

type src = [‘ L Int of int]

type instr =

| ILoad of reg ∗ src (∗ dst , src ∗)
| IAdd of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IMul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IIfZero of reg ∗ int (∗ guard, target ∗)
| IJmp of int (∗ target ∗)
| IMov of reg ∗ reg (∗ dst , src ∗)

let rec comp expr (st :(string ∗ int) list) = function

| EInt n →
let r = next reg () in

(r , [ILoad (‘L Reg r, ‘ L Int n)])

| EIfZero (e1, e2, e3) →
let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let (r3 , p3) = comp expr st e3 in

let r = next reg () in

(r , p1 @

[IIfZero (‘L Reg r1, (2+(List. length p3)))] @

p3 @

[IMov (‘L Reg r, ‘L Reg r3);

IJmp (1+(List. length p2))] @

p2 @

[IMov (‘L Reg r, ‘L Reg r2)]

)

a. (14 points) Suppose we extend the source language with short-circuiting disjunction EOr(e1, e2) that
does the following: First, it evaluates expression e1 to produce a value v. If v is non-zero, then v is returned
as the value of the disjunction. Otherwise, expression e2 is evaluated and its value is returned. For example,
EOr (EInt 1, EInt 2) evaluates to 1, and EOr (EInt 0, EInt 2) evaluates to 2. (Notice that e2 is not
evaluated if e1 is non-zero.)

Write a case of comp expr that compiles EOr.

let rec comp expr (st :(string ∗ int) list) = function

...

| EOr (e1, e2) →

Answer:

let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let r = next reg () in

(r , p1 @

[IIfZero (‘L Reg r1, 2);

IMov (‘L Reg r, ‘L Reg r1);

IJmp (1 + (List . length p2))] @

p2 @

[IMov (‘L Reg r, ‘L Reg r2)])

8

b. (10 points) Finally, consider the following slight modification of the CFG from the earlier problems:

x0 := 42

x1 := x0 + 3 x1 := 5

y0 := x1 - 1

x2 := x1

x2 := x2 - 1

6. y1 := y1 + 1 7. z0 := x2 + y1

y1 := y0

Draw the interference graph for the variables referred to in the above CFG. After you have drawn the
graph, “color” it by labeling nodes with colors a, b, c, d, etc, using the minimal number of colors possible.

Answer:

9

