
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Fall 2013

November 20, 2013

Instructions

This exam contains 9 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 25

3 20

4 20

5 15

Total 100

1

Question 1. Short Answer (20 points).

a. (5 points) In class we’ve discussed three virtual machines: the Lua VM, the Java VM, and the Dalvik
VM. List two differences that you can observe among the VMs, e.g., something different between Lua VM
and the Java VM, etc.

Answer: There are too many possible valid answers to list here. The most common correct
answers were: register-based (Lua, Dalvik) vs. stack-based (Java); many bytecode files (Java)
vs. one bytecode file (Dalvik); and instruction-level support for tables (Lua) vs. not (Java).

b. (5 points) Is dataflow analysis guaranteed to compute the meet over all paths (MOP) solution? Explain
your answer.

Answer: Not necessarily. For a distributive dataflow analysis problem, in which for any transfer
function f it is the case that f(x u y) = f(x) u f(y), then data flow will compute the MOP
solution because meet loses no information. But for non-distributive problems, such as constant
propagation, data flow analysis may not compute the MOP solution. Additionally, data flow
analysis may not terminte, in which case it does not compute any solution.

2

c. (5 points) What are the three possible representations of two-dimensional arrays that we discussed in
class? Explain the differences between them. Feel free to draw pictures if it’s helpful.

Answer: In row-major order, the array is represented as a single, contiguous block of memory,
with all elements of the first row at the beginning, then all elements of the second row, etc.
Column-major order is similar, except all elements of the first column come first, then all elements
of the second column etc. With indirection vectors, the array is actually an array of pointers,
one per row, pointing to another array somewhere else in memory containing the row. Thus,
with indirection vectors the memory is not necessarily contiguous. (Indirection vectors could be
column-oriented as well.)

d. (5 points) What is a virtual method table?

Answer: In a class-based language, each instance of a class shares the same methods. So rather
than replicate that list of classes for each instance, the compiler creates a single virtual method
table (vtable) per class containing its methods. Then instances have use a pointer to their class
vtable to perform dynamic dispatch.

3

Question 2. Types (25 points).

a. (7 points) Suppose int is a subtype of float, and consider the following four types:

int→ int int→ float float→ int float→ float

Draw a partial order diagram showing the ≤ relationships between these four types implied by the standard
subtyping rules. For example, if we asked you to draw the relationship between int and float, you would

draw the following: int

float

Also indicate which element is >, and which element is ⊥, if any.

Answer:

float → int

int → float

float → float int → int

> = int→ float and ⊥ = float→ int.

b. (8 points) Write down every type t such that ((int→ float)→ float) ≤ t, following standard subtyping
rules.

Answer:
(i→ i)→ f
(i→ f)→ f
(f → i)→ f
(f → f)→ f

4

c. (10 points) Fill in the following table with either an untyped (i.e., no type parameter annotations)
lambda calculus term (on the left) or its corresponding type according to the type inference algorithm we
saw in class (on the right). We’ve filled in the first row as an example. Remember the scope of λ extends as
far to the right as possible. For example, λx.λy.x y is parsed as λx.λy.(x y).

Term Type

λx.x α→ α

λx.3 α→ int

λx.λy.x α→ β → α

λx.λy.x y (α→ β)→ α→ β

λx.λy.λz.x (y z) (β → γ)→ (α→ β)→ α→ γ

λx.λy.λz.x z (y z) (α→ β → γ)→ (α→ β)→ α→ γ

λx.x (λy.3) ((α→ int)→ β)→ β

λx.λy.x (x y) (α→ α)→ α→ α

5

Question 3. Data flow analysis (20 points). Consider the following control-flow graph.

entry

1. c := a + b

2. d := a * c

3. e := d * d

4. i := 1

5. f := a + b

6. c := d + i

7. f := d * d

8. g := a * c 9. g := a + b

10. i := d + 1

exit

a. (10 points) Write down the sets of live variables at the beginning of each statement.

Statement Variables live at beginning of statement

1 a, b

2 a, b, c

3 a, b, d

4 a, b, d

5 a, b, d, i

6 a, b, d, i

7 a, b, c, d

8 a, b, c, d

9 a, b, d

10 a, b, d

6

b. (10 points) Write down the set of available expressions at the end of each statement.

Statement Expressions available at end of statement

1 a+b

2 a+b, a*c

3 a+b, a*c, d*d

4 a+b, a*c, d*d

5 a+b, d*d

6 a+b, d*d, d+i

7 a+b, d*d, d+i

8 a+b, d*d, d+i, a*c

9 a+b, d*d, d+i

10 a+b, d*d, d+1

7

Question 4. Data flow analysis design (20 points). The goal of sign analysis is to determine, for each
variable in the program, whether it is positive, negative, or zero. In this problem, you will design a data
flow analysis that implements sign analysis.

a. (5 points) Should the analysis be forward or backward?

Answer: Forward.

b. (5 points) What should be the lattice for sign analysis? Draw a picture to help your explanation. Note:
You do not need to worry about various combinations of signs (e.g., “positive or zero”).

Answer: The lattice is just like constant propagation, except instead of mapping variables to
values, it maps them to signs. More precisely, for each variable a, construct a lattice La with as:

La = ⊥

⊤

+ 0 –

Then the sign analysis lattice is La × Lb × . . . where a, b, . . . are the program variables.

c. (5 points) Suppose x = +, y = −, and z = 0 just prior to each for the following statements. Write down
the dataflow fact about a just after the statement.

a := x+ x a = +

a := x ∗ y a = −

a = x− y a = +

a := x+ y a = ⊥

d. (5 points) If we implement the usual dataflow analysis algorithm, is the algorithm guaranteed to
terminate? Why or why not?

Answer: Yes, the lattice has finite height and the transfer functions are monotonic, so the
analysis will terminate.

8

Question 5. Code generation (15 points). Below is a snippet of 08-codegen-2.ml from class, showing
the input expression language, the “bytecode” instruction language, and compilation. To save some writing,
we renamed ‘L Register to ‘L Reg.

type expr =

| EInt of int

| EAdd of expr ∗ expr

| ESub of expr ∗ expr

| EMul of expr ∗ expr

| EId of string

| EAssn of string ∗ expr

| ESeq of expr ∗ expr

| EIfZero of expr ∗ expr ∗ expr

type reg = [‘L Reg of int]

type src = [‘ L Int of int | ‘L Ptr of int]

type dst = [‘L Ptr of int]

type instr =

| ILoad of reg ∗ src (∗ dst , src ∗)
| IStore of dst ∗ reg (∗ dst , src ∗)
| IAdd of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IMul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IIfZero of reg ∗ int (∗ guard, target ∗)

| IJmp of int (∗ target ∗)
| IMov of reg ∗ reg (∗ dst , src ∗)

let rec comp expr (st :(string ∗ int) list) = function

| EInt n →
let r = next reg () in

(r , [ILoad (‘L Reg r, ‘ L Int n)])

| EIfZero (e1, e2, e3) →
let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let (r3 , p3) = comp expr st e3 in

let r = next reg () in

(r , p1 @

[IIfZero (‘L Reg r1, (2+(List. length p3)))] @

p3 @

[IMov (‘L Reg r, ‘L Reg r3);

IJmp (1+(List. length p2))] @

p2 @

[IMov (‘L Reg r, ‘L Reg r2)]

)

Suppose we extend the source language with a for loop EFor(e1, e2, e3, e4) roughly corresponding to
the C construct for (e1; e2; e3) e4. Here e1 is the initialization, e2 is the guard, e3 is the increment,
and e4 is the loop body. The loop body should be executed if the guard is non-zero. The whole construct
should return 0 as a result.

Write a case of comp expr that compiles EFor.

let rec comp expr (st :(string ∗ int) list) = function

...

| EFor (e1, e2, e3, e4) →

Answer:

let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let (r3 , p3) = comp expr st e3 in

let (r4 , p4) = comp expr st e4 in

let p3 p4 len = (List . length p3) + (List . length p4) in

let r = next reg () in

(r , p1 @

p2 @

[IIfZero (‘ L Register r2 , p3 p4 len + 1)] @

p4 @

p3 @

[IJmp (−(p3 p4 len + (List. length p2) + 2))] @

[ILoad (‘ L Register r , ‘ L Int 0)])

9

