
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Fall 2014

November 19, 2014

Instructions

This exam contains 10 pages, including this one. Make sure you have all the pages. Write
your name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 25

2 25

3 10

4 25

5 15

Total 100

1

Question 1. Short Answer (25 points).

a. (5 points) Briefly explain what a virtual method table (or vtable) is and what it’s used for.

Answer: It is a collection of methods for a particular class. Each instance of a class has a pointer
to the virtual method table for that class. When one of an object’s instance methods is invoked,
it is resolved by looking it up in the virtual method table.

b. (5 points) List three potential goals of optimization in a compiler.

Answer: Improve running time, decrease memory usage, reduce code size. Other reasonable
answers were also acceptable.

2

c. (5 points) Briefly explain what the progress theorem is.

Answer: A well-typed term is either a value, or it can be reduced a step.

d. (5 points) What do mutation and crossover have to do with automated program repair, as discussed in
class? Explain very briefly.

Answer: The automated program repair algorithm presented used mutation (changing a state-
ment in the program) and crossover (combining together two potential repaired programs) to
generate candidate repaired programs.

3

e. (5 points) Briefly explain what an activation record is and list 3 items in an activation record.

Answer: An activation record is a stack frame that contains information about a function
invocation, including the parameters, return address, local variables, space to temporarily save
registers, and possibly the caller’s activation record pointer.

4

Question 2. Type Systems (25 points).

a. (8 points) Assume that int < float. Write down every type t such that t ≤ int→ float→ float, following
standard subtyping rules.

Answer:
int→ float→ int
int→ float→ float
float→ float→ int
float→ float→ float

b. (2 points) Assume that int < float. Write down every type t such that t ≤ int ref→ float ref, following
standard subtyping rules.

Answer:
int ref→ float ref

5

c. (10 points) Fill in the following table with either an untyped (i.e., no type parameter annotations)
lambda calculus term (on the left) or its corresponding type according to the type inference algorithm we
saw in class (on the right).

Term Type

3 int

λx.x α→ α

λx.λy.y α→ β → β

λx.λy.y x α→ (α→ β)→ β

λx.x 3 (int→ α)→ α

d. (5 points) Recall the simply typed lambda calculus:

e ::= n | x | λx: t.e | e e
t ::= int | t→ t
A ::= ∅ | x: t, A

Int

A ` n : int

Var

A ` x : A(x)

Lam
x: t, A ` e : t′

A ` (λx: t.e) : t→ t′

App
A ` e1 : t→ t′ A ` e2 : t

A ` e1 e2 : t′

Draw a derivation that the following type judgment holds, where A = +: int → int → int. (You can draw
the derivation upward from the judgment, and you can write i instead of int to save time):

Answer:
x: int, A ` + : int→ int→ int x: int, A ` x : int

x: int, A ` + x : int→ int

A ` (λx: int.+ x) : int→ int→ int A ` 1 : int

A ` (λx: int.+ x) 1 : int→ int

A ` (λx: int.+ x) 1 : int→ int

6

Question 3. Interpreter Implementation (10 points). Below is a snippet of the bytecode interpreter
code from 06-codegen-2.ml.

type src = [‘Const of int | ‘Ptr of int]

type reg = [‘Reg of int]

type dst = [‘Ptr of int]

type symtbl = (string ∗ int) list

type heap = (int , int) Hashtbl. t

type regs = (int , int) Hashtbl. t

type instr =

| ILoad of reg ∗ src (∗ dst , src ∗)
| IStore of dst ∗ reg (∗ dst , src ∗)
| IAdd of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)

| IMul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IIfZero of reg ∗ int (∗ guard, target ∗)
| IJmp of int (∗ target ∗)
| IMov of reg ∗ reg (∗ dst , src ∗)

let rec run instr (h:heap) (rs : regs) = function

| IAdd (‘Reg r1, ‘Reg r2, ‘Reg r3) →
Hashtbl. replace rs r1 ((Hashtbl. find rs r2) +

(Hashtbl. find rs r3)); None

| IIfZero (‘Reg r, n) →
if (Hashtbl. find rs r) = 0 then Some n else None

| ...

Suppose we make the unfortunate decision to modify our bytecode language to have a special undefined
value, like JavaScript. We begin by introducing a new type, intOrUndef, to stand for either the undefined
value or an integer; we add a new instruction, IIfUndef (r, n); and we adjust the types src, heap, and regs
appropriately:

type intOrUndef = Undef | Int of int

type instr = ... | IIfUndef of reg ∗ int

type src = [‘Const of intOrUndef | ‘Ptr of int]

type heap = (int , intOrUndef) Hashtbl. t

type regs = (int , intOrUndef) Hashtbl. t

The desired semantics is as follows:

• IIfUndef (r,n) branches by n if r contains Undef, otherwise it falls through.

• If Undef if used as either argument to addition, the result should be Undef.

• If Undef is used as the guard of IIfZero, it should be treated as false (i.e., as a non-zero value).

Rewrite the cases in run instr for IIfUndef, IAdd, and IIfZero to implement this semantics. You can write a
helper function if you want. You do not need to implement any other parts of run instr.

let rec run instr (h:heap) (rs : regs) = function

Answer:

| IAdd (‘Reg r1, ‘Reg r2, ‘Reg r3) →
Hashtbl. replace rs r1 (stupid add (Hashtbl. find rs r2),

(Hashtbl. find rs r3)); None

| IIfZero (‘Reg r, n) →
match (Hashtbl.find rs r) with

| Int 0 → Some n

| → None

| IIfUndef (‘Reg r, n) >

match (Hashtbl.find rs r) with

| Undef → Some n

| → None

...

let stupid add = function

| Int x, Int y → x + y

| → Undef

7

Question 4. Code Generation (25 points). Below is more code from 06-codegen-2.ml, showing the
input expression and part of the compiler.

type expr =

| EInt of int

| EPlus of expr ∗ expr

| EMul of expr ∗ expr

| EId of string

| EAssn of string ∗ expr

| ESeq of expr ∗ expr

| EIfZero of expr ∗ expr ∗ expr

type symtbl = (string ∗ int) list

let rec comp expr (st :symtbl) = function

| EInt n →
let r = next reg () in

(r , [ILoad (‘Reg r, ‘Const n)])

| EPlus (e1, e2) →
let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let r = next reg () in

(r , p1 @ p2 @ [IAdd (‘Reg r, ‘Reg r1, ‘Reg r2)])

| EIfZero (e1, e2, e3) →
let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let (r3 , p3) = comp expr st e3 in

let r = next reg () in

(r , p1 @

[IIfZero (‘Reg r1, (2 + (List . length p3)))] @

p3 @

[IMov (‘Reg r, ‘Reg r3);

IJmp (1 + (List . length p2))] @

p2 @

[IMov (‘Reg r, ‘Reg r2)]

)

a. (10 points) Suppose we extend the source language with a repeat-until loop ERepeat(e1, e2), meaning
“repeat e1 until e2 becomes non-zero.” Note that a repeat-until loop always executes the body e1 at least
once (so it evaluates e1; checks if e2 is non-zero; if not evaluates e1 again; etc). Write a case of comp expr
that compiles ERepeat. The loop itself should evaluate to 0.

let rec comp expr (st :symtbl) = function

...

| ERepeat (e1, e2) →

Answer:

let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let r = next reg () in

(r , p1 @

p2 @

[IIfZero (‘ L Register r2 , −((List . length p1) + (List . length p2) + 1));

ILoad (‘ L Register r , ‘ L Int 0)])

8

b. (15 points) Now consider again adding an undefined value to the language:

type expr =

| EUndef

| ...

Write the EUndef case of comp expr. Also, rewrite the EPlus case of comp expr to implement the Undef
semantics without relying on the special IAdd handling that understands Undef. That is, your compiled
output code should only call IAdd with integer arguments.

let rec comp expr (st :symtbl) = function

...

| EUndef →

Answer:

let r = next reg () in

(r , [ILoad(r , ‘Const Undef)])

...

| EPlus (e1, e2) →

Answer:

let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let r = next reg () in

(r , p1 @

p2 @

[IIfUndef (r1 , 3);

IIfUndef (r2 , 2);

IAdd(r, r1 , r2);

IJmp 1

ILoad(r , ‘Const Undef)])

9

Question 5. Optimization (15 points). In each row of the table, perform the indicated optimization
(and only that optimization), writing down the optimized code on the right-hand side of the table. To reduce
writing, we write rn instead of ‘Reg n, and we write n instead of ‘Const n.

Initial code Optimized code

ILoad (r0 , 42)

IMov (r1, r0)

IAdd (r2 , r0 , r1)

Copy propagation

Answer:

ILoad (r0 , 42)

IMov (r1, r0)

IAdd (r2 , r0 , r0)

IAdd (r3 , r1 , r2)

IMul (r4 , r1 , r2)

IAdd (r5 , r1 , r2)

Common subexpression elimination

Answer:

IAdd (r3 , r1 , r2)

IMul (r4 , r1 , r2)

IMov (r5, r3)

ILoad (r0 , 42)

ILoad (r1 , 3)

IAdd (r3 , r0 , r1)

IMul (r4 , r1 , r2)

IAdd (r5 , r1 , r3)

Constant folding

Answer:

ILoad (r0 , 42)

ILoad (r1 , 3)

ILoad (r3 , 45)

IMul (r4 , r1 , r2)

ILoad (r5 , 48)

ILoad (r0 , 0)

ILoad (r1 , 1)

ILoad (r2 , 2)

IAdd (r3 , r0 , r1)

IAdd (r4 , r0 , r2)

IAdd (r5 , r1 , r3)

(∗ assume only r5 is live ∗)

Dead code elimination

Answer:

ILoad (r0 , 0)

ILoad (r1 , 1)

IAdd (r3 , r0 , r1)

IAdd (r5 , r1 , r3)

10

