
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Fall 2016

November 21, 2016

Instructions

This exam contains 7 pages, including this one. Make sure you have all the pages. Write your
name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 20

2 20

3 30

4 20

5 10

Total 100

1

Question 1. Short Answer (20 points).

a. (5 points) Briefly describe what an intermediate representation is.

Answer: An intermediate representation is a program representation that is at a level of abstrac-
tion in between the program source code/abstract syntax tree and the compiler output (typically
bytecode or machine code).

b. (5 points) List three things that might be stored in an activation record or stack frame.

Answer: Parameters, saved registers, the return value, the return address, local variables and
temporaries.

2

c. (5 points) Write down the data-flow equations for a backward may analysis, i.e., define in(s) and out(s)
for a statement s in terms of gen(s) and kill(s). Write pred(s) for the predecessor of s and succ(s) for the
successor of s.

in(s) =

out(s) =

d. (5 points) Briefly explain what it means for a type system to be sound. (Do not simply refer to progress
and preservation—define soundness in more direct terms.)

Answer: Soundness means that a well-typed program either evaluates forever (“diverges”) or
eventually reduces to a value. In other words, no mater how long a well-typed program runs, it
will never get stuck in the operational semantics sense.

3

Question 2. Code Generation (20 points). Below is part of the RubeVM instruction set, followed by
a type representing expression ASTs for a small language.

type reg = [‘Reg of int]

type value = [‘ Int of int | ‘ Str of string |
‘ Id of string]

type id = [‘ Id of string]

type instr =

| I const of reg ∗ value (∗ dst , src ∗)
| I mov of reg ∗ reg (∗ dst , src ∗)
| I add of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I sub of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I mul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)

| I div of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I eq of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I lt of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I leq of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| I jmp of int (∗ offset ∗)
| I if zero of reg ∗ int (∗ src , offset ∗)

type expr =

| EInt of int

| EAdd of expr ∗ expr

| EIfPos of expr ∗ expr ∗ expr

The EInt and EAdd forms are standard. The form EIfPos(e1, e2, e3) evaluates e1. Then if e1 is positive, it
evaluates to e2; otherwise it evaluates to e3. For example, EIfPos(5, 1, 2) evaluates to 1, and EIfPos(0, 1, 2)

and EIfPos(−5, 1, 2) both evaluate to 2.
Write a function comp expr : expr −> reg ∗ (instr list) that returns a list of instructions that, when run on

RubeVM, will compute the expression’s value and store it in the returned reg. Note you may not evaluate
the expression as part of code generation, i.e., you have to write a compiler, not an interpreter. You may
write as many helper functions as you need. Your code should be self-contained, e.g., if you need next reg

you need to implement it, though you may use OCaml standard library functions.

Answer:

let next reg =

let n = ref 0 in

fun () −> (let temp = !n in n:=!n+1; ‘Reg temp)

let rec comp expr = function

| EInt n −>
let r = next reg () in

(r , [I const (‘Reg r, ‘ Int n)])

| EAdd (e1, e2) −>
let r = next reg () in

let (r1 , p1) = comp expr e1 in

let (r2 , p2) = comp expr e2 in

(r , p1 @ p2 @ [I add (r , r1 , r2)])

| EIfPos (e1, e2, e3) −>
let (r1 , p1) = comp expr e1 in

let (r2 , p2) = comp expr e2 in

let (r3 , p3) = comp expr e3 in

let r = next reg () in

(r , p1 @

[I const (r , ‘ Int 0);

I leq (r , r1 , r); (∗ ((r = 1) ⇐⇒ (r1 ≤ 0)) and ((r = 0) ⇐⇒ (r1 > 0)) ∗)
I if zero (r , (2 + (List . length p3)))] @

p3 @

[I mov (r , r3);

I jmp (1 + (List . length p2))] @

p2 @

[I mov (r , r2)]

)

4

Question 3. Data flow analysis (30 points).

In the following table, show each iteration of available expressions
for the control-flow graph on the right. For each iteration, list the
statement taken from the worklist in that step, the value of out
computed for that statement, and the new worklist at the end of
the iteration. You may or may not need all the iterations; you
may also add more iterations if needed. Do not add the entry node
to the worklist. Note that we branch directly from assignment
statements in this CFG to keep the problem shorter.

Use ∅ for the set of no expressions, and > for the set of all expres-
sions. What is >?

> =

1. x = a + b

3. t = a + y

6. x = a + b

7. z = a + y

2. y = 3

0. entry

8. exit

4. a = a + 1 5. t = a * b

What are the initial out ’s for each statement?

Stmt 0 1 2 3 4 5 6 7 8
Initial
out

Iteration 0 1 2 3 4

Stmt taken
from worklist

N/A 1

out of taken
stmt

N/A a+b

New worklist 1,2,3,4,5,6,7,8 2,3,4,5,6,7,8

Iteration 5 6 7 8 9

Stmt taken
from worklist

out of taken
stmt

New worklist

Iteration 10 11 12 13 14

Stmt taken
from worklist

out of taken
stmt

New worklist

5

Question 4. Optimization (20 points). Fill in the following table so that, from left to right, each row
shows a sequence of two optimizations applied to a program written in RubeVM bytecode.

Original code

const r0, 10

const r1, 20

add r2, r0, r1

mov r3, r2

add r4, r2, r3

(only r4 accessed below here)

After copy propagation After dead code elimination

Original code After constant folding

rd glob r0, x

const r1, 5

const r2, 10

add r3, r2, r0

const r4, 10

add r5, r2, r0

After common subexpr. elim.

Original code

rd glob r0, y

const r1, 0

rd glob r2, z

if zero r2, 3

add r3, r0, r1

sub r2, r2, r3

jmp -4

After algebraic simplification After loop inv. code motion

6

Question 5. Type Systems (10 points). Here is the simply typed lambda calculus with integers.

e ::= v | x | e e v ::= n | λx: t.e t ::= int | t→ t A ::= · | x : t, A

Int

A ` n : int

Var

A ` x : A(x)

Lam
x: t, A ` e : t′

A ` λx: t.e : t→ t′

App
A ` e1 : t→ t′ A ` e2 : t

A ` e1 e2 : t′

a. (8 points) Draw a derivation showing that the following term is well-typed in the empty type envi-
ronment, where we use i instead of int to save writing. You need not label the uses of the rules with their
names.

(λf : i→ i→ i.f 3) (λx: i.λy: i.x)

Answer:

f : i→ i→ i ` f : i→ i→ i f : i→ i→ i ` 3 : i

f : i→ i→ i ` (f 3) : i→ i

· ` (λf : i→ i→ i.f 3) : (i→ i→ i)→ (i→ i)

y: i, x: i ` x : i

x: i ` λy: i.x : i→ i

· ` (λx: i.λy: i.x) : i→ i→ i

· ` (λf : i→ i→ i.f 3) (λx: i.λy: i.x) : i→ i

b. (2 points) Write down an expression that, according to the type rules above, has type (i→ i)→ i.

Answer: There are many possible answers such as λx: i→ i.x 3.

7

