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Question 1. Short Answer (20 points).

a. (3 points) Briefly describe the difference between a function call and a system call. Explain whether
the two have the same calling convention and why or why not.

Answer: Function calls transfer control from one function to another, within the program’s
own code or between the code and a library. System calls are used when the program needs the
operating system kernel to perform some computation or action on its behalf, with privilege.

The conventions for function calls and system calls are typically different. One is defined by
the language or compiler for interoperability of program modules. The other is defined by the
operating system and must be followed by all programs, regardless of implementation language.

b. (3 points) Briefly describe two code generation techniques for compiling C switch statements. Explain
how the two techniques compare, i.e., in what situation(s) one technique should be favored over the other.

Answer:

• Cascaded if-then-else. Check each option in succession.

• Binary search. Order the guards and then use a search algorithm.

• Jump table. Use the guard as an index into code or a set of code pointers.

Jump tables are most effective when the guards are “dense”, i.e., when they are numerically close.
Jump tables are more time efficient, since they require only a single constant-time operation to
compute the code location. However, they can be inefficient for space if the guards are spread
out. Other answers that describe memory or time efficiency, or ease of implementation, are also
acceptable.

c. (3 points) Briefly describe symbolic execution and name one application of the technique. What is the
fundamental challenge that prevents exhaustive symbolic execution for most real-world programs?

Answer: Symbolic execution is a program analysis technique that treats program inputs as
symbolic variables, rather than concrete values. Program expressions are computed in terms of
the symbolic variables and execution is logically forked at branch points to represent all possible
paths. Symbolic execution can simultaneously explore multiple paths that a program could take
under different inputs, without testing every possible input. It is a popular technique with testing
and bug finding tools.

The primary challenge is path/state space explosion. Real programs have an exponential number
of paths, making it impossible to symbolically execute every path. Therefore, approximation,
path pruning, and search strategies have become a critical component of real symbolic execution
systems.
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d. (5 points) The following C program contains two functions, bar() and foo(). bar() calls foo(). Draw
a representation of a 32-bit x86 stack just after the assignment on line 9 is executed. Include as much stack
history as you can infer from the code snippet. Clearly indicate the current “top” of the stack (esp), the
current frame pointer (ebp), and which direction the stack grows. You can assume the code is compiled
without any optimizations and that main() calls bar(). If you make any other assumptions, state those as
well.

1 int bar ( int x , int y ) {
2 int z ;
3 z = foo ( x + 10 , y − 1 0 ) ;
4 return z ;
5 }
6
7 int f oo ( int a , int b) {
8 int c = 100 ;
9 int d = a ∗ b + c ;

10 // . . .
11 return d ;
12 }

Answer:

Registers Stack Notes
higher addresses go up

↑
...

main’s local variables main’s activation record
...
y arguments to bar, pushed in reverse order
x

main’s return address bar’s activation record
main’s saved ebp

z bar’s local variables
... register save space

b = y - 10 arguments to foo, pushed in reverse order
a = x + 10

bar’s return address foo’s activation record
ebp → bar’s saved ebp

c = 100 foo’s local variables
esp → d = a * b + c

↓
stack grows down esp could also point lower

if space was pre-allocated
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e. (6 points) Translate the following program to 3-address code. Draw the control-flow graph for the
resulting program.

x = 10
y = 3
z = x + ( y ∗ 10) + 100
while ( ( z > y ) && ( z > x ) ) {

i f ( a > 10) {
z = z − 100

} else {
z = z − x ∗ 2

}
}

1. x = 10
2. y = 3
3. t1 = y * 10
4. t2 = x + t1
5. z = t2 + 100

6. if z > y 

8. if a > 10 

9. z = z - 100

7. if z > x

10. t3 = x * 2 
11. z = z - t3 

exit 
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Question 2. Code Generation (20 points). Below (left) is a set of types representing a small machine
instruction set, followed by (right) a type representing expression ASTs for a small language.

n

type instr =

| ILoad of reg ∗ val (∗ dst , src ∗)
| IStore of id ∗ reg (∗ dst , src ∗)
| IAdd of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| ISub of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IIfZero of reg ∗ int (∗ guard, target ∗)
| IJmp of int (∗ target ∗)
| IMov of reg ∗ reg (∗ dst , src ∗)

type expr =

| EInt of int (∗ integers ∗)
| EId of string (∗ variables ∗)
| EAdd of expr ∗ expr (∗ addition ∗)
| ESub of expr ∗ expr (∗ subtraction ∗)
| EAssn of string ∗ expr (∗ assignment ∗)
| ESeq of expr ∗ expr (∗ sequences ∗)
| EWhile of expr ∗ expr (∗ while loops ∗)
| EDoWhile of expr ∗ expr (∗ do−while loops ∗)

The instruction set has direct support for named locations (i.e., variables), which can be read from or written
to via the ILoad and IStore instructions, respectively. ILoad also supports loading a register with a constant
integer. IAdd and ISub implement register addition and subtraction, respectively. In both cases, the result
is stored in a register. The IJmp (absolute jump) and IIfZero (conditional jump) instructions adjust the PC
relative to the current instruction’s PC. IMov copies the value stored in one register to another. The machine
supports an unlimited number of registers.

The expressions EInt and EId represent constant integers and variables, respectively. EAdd and ESub are the
standard binary addition and subtraction expressions. EAssn represents an assignment to a variable. ESeq is
the sequence of two expressions. The expression EWhile(e1, e2) executes the body e2 as long as the guard e1

is not zero, and the whole expression evaluates to 0. EDoWhile(e1, e2) executes e1 until e2 becomes non-zero.
Note that a do-while loop always executes the body e1 at least once (so it evaluates e1; checks if e2 is
non-zero; if not evaluates e1 again; etc). The loop itself should evaluate to 0.

Question is on the next page.
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Write a function comp expr : expr → reg ∗ ( instr list ) that takes a single expression and returns the output
register and a list of instructions that compute the expression. You may define as many helper functions as
you need, and you may also use OCaml standard library functions.

let next reg =

let n = ref 0 in

fun () → ( let temp = !n in n:=!n+1; temp)

let rec comp expr = function

| EInt n → let r = next reg () in

(r , [ILoad (‘Reg r, ‘ Int n)])

| EAdd (e1, e2) →
let (r1 , p1) = comp expr e1 in

let (r2 , p2) = comp expr e2 in

let r = next reg () in

(r , p1 @ p2 @ [IAdd (‘Reg r, ‘Reg r1, ‘Reg r2)])

| ESub (e1, e2) →
let (r1 , p1) = comp expr e1 in

let (r2 , p2) = comp expr e2 in

let r = next reg () in

(r , p1 @ p2 @ [ISub (‘Reg r, ‘Reg r1, ‘Reg r2)])

| EId x →
let r = next reg () in

(r , [ILoad (‘Reg r, ‘ Id x )])

| EAssn (x, e) →
let (r , p) = comp expr e in

(r , p @ [ IStore (‘ Id x, ‘Reg r )])

| ESeq (e1, e2) →
let (r1 , p1) = comp expr e1 in

let (r2 , p2) = comp expr e2 in

(r2 , p1 @ p2)

| EWhile (e1, e2) →
let (r1 , ccode) = comp expr e1 in

let (r2 , ecode) = comp expr e2 in

let r3 = next reg () in

let elength = List . length ecode in

let clength = List . length ccode in

let guard = [ IIfZero (‘Reg r1, elength+1)] in

let loopback = [IJmp (−1 ∗ (elength + clength + 2))] in

let return zero = [ILoad(‘Reg r3, ‘ Int 0)] in

(r3 , List .concat [ccode;guard;ecode;loopback; return zero ])

| EDoWhile (e1, e2) →
let (r1 , ccode) = comp expr e1 in

let (r2 , ecode) = comp expr e2 in

let r3 = next reg () in

let elength = List . length ecode in

let clength = List . length ccode in

let guard = [ IIfZero (‘Reg r2, 1) ] in

let loopback = [IJmp (−1 ∗ (elength + clength) + 2)] in

let returnzero = [ILoad(‘Reg r3, ‘ Int 0)] in

(r3 , List .concat [ecode; ccode; guard; loopback; returnzero ])
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Question 3. Data Flow (20 points).

In the following table, show each iteration of reaching definitions
for the control-flow graph on the right. For each iteration, list the
statement taken from the worklist in that step, the value of out
computed for that statement, and the new worklist at the end of
the iteration. You may or may not need all the iterations; you may
also add more iterations if needed. Do not add the entry node to
the worklist.

Use ∅ for the set of no definitions, and> for the set of all definitions.
What is >?

> =
1(a), 2(b), 4(a), 6(b), 7(a), 8(a)

0. entry

1. a := 1

2. b := 2

3. if a < 10

4. a:= a + b

5. if b < 10

6. b := a + 2 7. a := a + 2

8. a:= a - b

9. exit

What are the initial out ’s for each statement?

Stmt 0 1 2 3 4 5 6 7 8
Initial
out

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Iteration 0 1 2 3 4

Stmt taken
from worklist

N/A 1 2 3 4

out of taken
stmt

N/A 1(a) 1(a),2(b) 1(a),2(b) 2(b),4(a)

New worklist 1,2,3,4,5,6,7,8 2,3,4,5,6,7,8 3,4,5,6,7,8 4,5,6,7,8 5,6,7,8

Iteration 5 6 7 8 9

Stmt taken
from worklist

5 6 3 4 5

out of taken
stmt

2(b),4(a) 4(a),6(b) 1(a),2(b),4(a),6(b) 2(b),4(a),6(b) 2(b),4(a),6(b)

New worklist 6,7,8 3,7,8 4,7,8 5,7,8 6,7,8

Iteration 10 11 12 13 14

Stmt taken
from worklist

6 7 3 4 8

out of taken
stmt

4(a),6(b) 2(b),6(b),7(a) 1,2,4,6,7 2(b),4(a),6(b) 2(b),6(b),8(a)

New worklist 7,8 3,8 4,8 8 ∅
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Question 4. Optimization (20 points). Below are (left) a Simpl function that I wrote to test my project
4 and (right) the RubeVM code that my compiler generated.

1 def foo(x)

2 t = mktab();

3 i = 0;

4 while ( i < x) do

5 a = x + 10;

6 if a < 5 then

7 t [ i ] = a + x

8 else

9 t [ i ] = a

10 end;

11 i = i + 1

12 end

13 end

1 foo:

2 mov r7, r0

3 const r10, mktab

4 call r10, 9, 8

5 const r11, 0

6 lt r12, r11, r7

7 if zero r12, 15

8 const r14, 10

9 add r13, r7 , r14

10 const r17, 5

11 lt r16, r13, r17

12 if zero r16, 4

13 add r18, r13, r7

14 wr tab r9 , r11, r18

15 mov r15, r18

16 jmp 2

17 wr tab r9 , r11, r13

18 mov r15, r13

19 const r20, 1

20 add r19, r11, r20

21 mov r11, r19

22 jmp −17
23 const r21, 0

24 ret r21

In the space below, identify two (2) local and two (2) global optimizations that could be applied to this code.
Clearly identify the type of optimization, the code location, and how the code would change. Hint: you may
want to convert the RubeVM code to a more familiar three-address form and draw a control-flow graph first.

2. r7 = r0
3. r10 = mktab
4. r9 = mktab() 
5. r11 = 0

6. r12 = (r11 < r7) 
7. if r12 == 0

8. r14 = 10
9. r13 = r7 + r14 
10. r17 = 5 
11. r16 = (r13 < r17) 
12. if r16 == 0 

13. r18 = r13 + r7
14. r9[r11] = r18 
15. r15 = r18 

17. r9[r11] = r13
18. r15 = r13 

19. r20 = 1
20. r19 = r11 + r20
21. r11 = r19
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a. (5 points) Local optimization 1

Answer: Using the hint, we converted the RubeVM code into a CFG (see previous page). Now
we can easily see statements 13-15 can leverage copy propagation – we don’t need to use r18 at
all. The block becomes:

Three-address RubeVM
13. r15 = r13 + 7

14. r9[r11] = r15

15. <removed>

13. add r15, r13, r7

14. wr tab r9, r11, r15

15. <removed>

b. (5 points) Local optimization 2

Answer: Copy propagation, like above, but to remove r19. The block becomes:

Three-address RubeVM
19. r20 = 1

20. r11 = r11 + r20

21. <removed>

19 const r20, 1

20 add r11, r11, r20

21 <removed>

c. (5 points) Global optimization 1

Answer: Loop invariant code motion. The assignment to variable a (r17) does not depend on
any modifications inside the loop, so it can be hoisted above the loop (e.g., just after statement
5) to save cycles during the loop. Similarly, a + x (r18) is loop invariant and could be computed
once, before the loop.

d. (5 points) Global optimization 2

Answer: Code specialization. There is a condition inside the loop (a < 5, 11. lt r16, r13,

r17) that does not vary depending on the loop. We can invert the loop and conditional to make
one loop for the true case and one for the false, which will run faster during the loop’s execution.

Alternatively, rather than specialize the loop itself, a more complicated optimization could be
performed following the code motion optimization described in part c. Since both branches of
the conditional assign to the same table location t[i], the conditional could be used to compute
the correct right-hand side (a or a + x) and put the result in the same register. Then, the loop
can just iterate through assigning to a constant value. Logically, the same as this:

def foo(x)

t = mktab();

i = 0;

if a < 5 then

temp = a + x

else

temp = a

end;

while (i < x) do

t[i] = temp

i = i + 1

end

end

Directory ID: 9 CMSC430, Fall 2018, Midterm 2



Question 5. Type Systems (20 points). Here is the simply typed lambda calculus with integers, floats,
and pairs.

e ::= v | x | e e | (e, e) v ::= n | f | λx: t.e t ::= int | float | t→ t | t× t A ::= · | x : t, A

Int

A ` n : int

Float

A ` f : float

Var

A ` x : A(x)

Pair
A ` e1 : t A ` e2 : t′

A ` (e1, e2) : t× t′

Lam
x: t, A ` e : t′

A ` λx: t.e : t→ t′

App
A ` e1 : t→ t′ A ` e2 : t

A ` e1 e2 : t′

a. (5 points) Draw a derivation showing that the following term is well-typed in the given type environment,
where we use i instead of int and f instead of float to save space. You need not label the uses of the rules
with their names.

A = +: i→ i→ i, ⊕: f → f → f

A ` ((λx: i.λy: f.(+ x 5,⊕ y 5.0)) 7 7.0): i× f

Answer:

A = +: i→ i→ i, ⊕: f → f → f
B = x: i, A

C = y: f, x: i, A

C ` +: i→ i→ i C ` x: i

C ` (+ x): i→ i C ` 5: i

C ` (+ x 5): i

C ` ⊕: f → f → f C ` y: f

C ` (⊕ y): f → f C ` 5.0: f

C ` (⊕ y 5.0): f

C ` (+ x 5,⊕ y 5.0): i× f
B ` λy: f.(+ x 5,⊕ y 5.0): f → i× f

A ` (λx: i.λy: f.(+ x 5,⊕ y 5.0)): i→ f → i× f A ` 7: i

A ` ((λx: i.λy: f.(+ x 5,⊕ y 5.0)) 7): f → i× f A ` 7.0: f

A ` ((λx: i.λy: f.(+ x 5,⊕ y 5.0)) 7 7.0): i× f
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b. (5 points) If we make int a subtype of float, we get the following additional type rules (note that
application has been updated):

S-NUM

int ≤ float

S-PROD
t1 ≤ t′1 t2 ≤ t′2
t1 × t2 ≤ t′1 × t′2

App
A ` e1 : t1 → t′1 A ` e2 : t2 t2 ≤ t1

A ` e1 e2 : t′1

S-ARROW

t1 → t′1 ≤ t2 → t′2

i. (2 points) The rule S-ARROW, which extends the subtyping relationship to arrow types (functions), is
incomplete. Fill in the rest of the rule.

Answer:
S-ARROW
t2 ≤ t1 t′1 ≤ t′2
t1 → t′1 ≤ t2 → t′2

ii. (3 points) Given your rule, can (+: int→ int→ int) be used in computations where (⊕: float→ float→
float) is expected? Explain why or why not. If not, give an example of a type that can be used where ⊕ is
expected.

Answer: No. The ⊕ function requires a float input. The + function requires an int. The
subtype rule for arrow requires that float ≤ int, which is not true by the other type rules. float→
float→ int is the only other type of function that can be used in place of float→ float→ float.
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c. (10 points) Consider type inference for the simply-typed lambda calculus, this time without the float,
pair, and subtyping extensions.

e ::= v | x | e e
v ::= n | λx.e
t ::= α | int | t→ t
A ::= · | x : t, A

Int

A ` n : int

Var
x ∈ dom(A)

A ` x : A(x)

Lam
x:α,A ` e : t′ α fresh

A ` λx.e : α→ t′

App
A ` e1 : t A ` e2 : t′

t = t′ → β β fresh

A ` e1 e2 : β

i. (5 points) Draw a derivation showing type inference applied to the following term. Use subscripts to
distinguish new instances of type inference variables. For example, α1, α2, β1, β2, etc.

+: int→ int→ int ` (λx.+ x 5) 37

Answer:

A = +: i→ i→ i
B = x:α,A

B ` +: int→ int→ int B ` x:α
i→ i→ i = α→ β3

B ` (+x):β3 B ` 5: int
β3 = int→ β2

B ` (+ x 5):β2

A ` (λx.+ x 5) : α→ β2 A ` 37: int
α→ β2 = int→ β1

A ` (λx.+ x 5) 37 : β1

ii. (3 points) Draw a union find data structure representing the constraints.

Answer:

→

→int

int int

→

β3α
β2

β1

iii. (2 points) Write down a solution to the associated constraints.

Answer: α = β2 = β1 = int β3 = int→ int
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This page is intentionally blank for extra work space. If you want the work on this page to count, clearly
label which question you are answering and write “see back page” in the answer space for the question.
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