
Name:

Midterm 2
CMSC 430

Introduction to Compilers
Spring 2012

April 18, 2012

Instructions

This exam contains 10 pages, including this one. Make sure you have all the pages. Write
your name on the top of this page before starting the exam.

Write your answers on the exam sheets. If you finish at least 15 minutes early, bring your exam to the
front when you are finished; otherwise, wait until the end of the exam to turn it in. Please be as quiet as
possible.

If you have a question, raise your hand. If you feel an exam question assumes something that is not
written, write it down on your exam sheet. Barring some unforeseen error on the exam, however, you
shouldn’t need to do this at all, so be careful when making assumptions.

Question Score Max

1 28

2 15

3 22

4 35

Total 100

1

Question 1. Short Answer (28 points).

a. (7 points) Explain briefly what bitvectors are used for in data flow analysis, and why they may be worth
using.

Answer: Bitvectors are an efficient representation of sets of data flow facts in which each fact
is represented by a bit in the vector. Bitvector union and intersection operations are done using
bitwise-or and -and, respectively, and so they are much faster (approximately 32× or 64×) than
representations in which each fact is, say, a node in a data structure.

b. (7 points) Explain briefly what an activation record is, and list four items an activation record is likely
to contain.

Answer: An activation record provides local storage for a function invocation. Activation records
may include the function’s parameters, the return address it should jump to on exit, and space
for the return value, saved registers, caller’s frame pointer (or activation record pointer), and the
callee’s local variables.

2

c. (7 points) In class, we discussed some recent tools that use dataflow analysis to find bugs in programs
(rather than for optimization). Explain what false positives and false negatives are in this context. (You
will not lose any points if you swap the definitions of these terms.)

Answer: False positives are bug reports (generated by the tools) that do not correspond to
actual bugs. False negatives are bugs in the programs whose presence is not detected by the
tools.

d. (7 points) Explain in at most 3 sentences what dynamic software updating is.

Answer: Dynamic software updating allows programs to be updated on-the-fly with new code
and data representations, without shutting the program down or restarting.

3

Question 2. Definite assignment analysis (15 points). A variable is definitely assigned to at a program
point if it is guaranteed to have been be written to (possibly more than once) on all paths from the start of
the program to that point.

a. (4 points) What C programming mistake could we use definite assignment analysis to detect?

Answer: Local variables that are read but not initialized.

a. (8 points) Suppose we want to implement definite assignment analysis as a data flow analysis.

i. What is the direction of this analysis?

Answer: Forward

ii. Is this a may or a must analysis?

Answer: Must

iii. What are entry or exit facts for this analysis, in general terms?

Answer: The empty set

iv. What are the initial facts for this analysis, in general terms?

Answer: The set of all variables used in the program.

b. (3 points) Write down Gen and Kill sets for the following statements for definite assignment analysis.

Statement Gen Kill
a = b a ∅

a = b + c a ∅

a = a + 1 a ∅

4

This page intentionally left blank.

5

Question 3. Data flow analysis (22 points). Consider the following control-flow graph.

1. a = 1

2. b = 10

3. c = a + b

4. d = a - b

5. e = c + d

6. d = c + d

7. b = a + b

8. a = a + 1

9. e = b * b

10. e = c - d

11. f = c + d

12. a = a + 1

a. (5 points) Write down the Gen/Kill sets for live variable analysis for the following statements in the
control flow graph. Write ∅ for the empty set.

Statement Gen Kill
1 ∅ a

3 a,b c

6 c,d d

8 a a

9 b e

6

b. (12 points) For each statement in the control-flow graph, show the results of available expressions,
i.e., show the set of expressions that are available at the end of the statement. Write ∅ for the empty set.

Statement Expressions
1 ∅

2 ∅

3 a+b

4 a+b, a-b

5 a+b, a-b, c+d

6 ∅

7 ∅

8 ∅

9 b*b

10 c-d

11 c-d, c+d

12 c-d, c+d

c. (5 points) Write down the set of statements s such that the definition at statement 4 may reach the
end of statement s. (Don’t forget to include statement 4 in your list.)

Answer: 3, 4, 5, 10, 11, 12

7

Question 4. Code generation, register allocation, and optimization (35 points). Below is a
snippet of codegen-2.ml from class, showing the input expression language, the “bytecode” instruction
language, and compilation. (Here we’ve renamed ‘L Register to ‘L Reg to save some writing.)

type expr =

| EInt of int

| EAdd of expr ∗ expr

| EMul of expr ∗ expr

| EId of string

| EAssn of string ∗ expr

| ESeq of expr ∗ expr

| EIfZero of expr ∗ expr ∗ expr

type reg = [‘L Reg of int]

type src = [‘ L Int of int | ‘L Ptr of int]

type dst = [‘L Ptr of int]

type instr =

| ILoad of reg ∗ src (∗ dst , src ∗)
| IStore of dst ∗ reg (∗ dst , src ∗)
| IAdd of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IMul of reg ∗ reg ∗ reg (∗ dst , src1 , src2 ∗)
| IIfZero of reg ∗ int (∗ guard, target ∗)

| IJmp of int (∗ target ∗)
| IMov of reg ∗ reg (∗ dst , src ∗)

let rec comp expr (st :(string ∗ int) list) = function

| EInt n →
let r = next reg () in

(r , [ILoad (‘L Reg r, ‘ L Int n)])

| EIfZero (e1, e2, e3) →
let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let (r3 , p3) = comp expr st e3 in

let r = next reg () in

(r , p1 @

[IIfZero (‘L Reg r1, (2+(List. length p3)))] @

p3 @

[IMov (‘L Reg r, ‘L Reg r3);

IJmp (1+(List.length p2))] @

p2 @

[IMov (‘L Reg r, ‘L Reg r2)]

)

a. (10 points) Suppose we extended the source language with a while loop:

type expr = ... | EWhile of expr ∗ expr

Here, EWhile(e1,e2) has the usual semantics, where e1 is the loop guard—which is considered false if 0 and
true otherwise—and e2 is the loop body. Loops should be evaluated for their side effects only, and no matter
how many times (0 or more) the loop body is evaluated, all while loops should return the value 0.

Write a case of comp expr that handles while loops. (Hint: recall that the IJmp and IIfZero instructions
add their offset to the program counter for the following instruction; offsets may be negative.)

| EWhile (e1, e2) →

Answer:

let (r1 , p1) = comp expr st e1 in

let (r2 , p2) = comp expr st e2 in

let r = next reg () in

(r , p1 @

[IIfZero (‘L Reg r1, (1 + List . length p2))] @

p2 @

[IJmp (− ((List . length p2) + (List . length p1) + 2))] @

[ILoad (‘L Reg r, ‘ L Int 0)]

)

8

b. (15 points) Next, consider the bytecode program in the left column below.
In the second column below, list the numbers of registers that are live after each instruction—we’ve given

a couple of examples to get you started.
Now suppose that we have three phyiscal registers available, ra, rb, and rc. In the rightmost column

group below, assign each virtual register to a physical register, and indicate what virtual registers you need
to spill after executing an instruction or load before executing an instruction. For example, if you had an
instruction IAdd(‘L Reg 0, ‘L Reg 1, ‘L Reg 2), you could list 0 in the spill column and 1,2 in the load column
if you needed to spill and load all possible registers. (Don’t forget to also assign any loaded virtual registers
to physical registers.)

You may use any spill policy you choose, but you should try to maximize register usage—don’t load and
spill all registers with every instruction.

Reg. Assignment
Instruction Live registers ra rb rc spills loads

ILoad (‘L Reg 0, ‘ L Int 1) 0 0

ILoad (‘L Reg 1, ‘ L Int 42) 0,1 0 1

IAdd (‘L Reg 2, ‘L Reg 0, ‘L Reg 1) 0,2 0 1 2

ILoad (‘L Reg 3, ‘ L Int 2) 0,2,3 0 3 2

ILoad (‘L Reg 4, ‘ L Int 41) 0,2,3,4 4 3 2 0

IMul (‘L Reg 5, ‘L Reg 4, ‘L Reg 2) 0,2,3,5 5 3 2

IAdd (‘L Reg 6, ‘L Reg 3, ‘L Reg 5) 0,2,6 5 6 2

IAdd (‘L Reg 7, ‘L Reg 2, ‘L Reg 6) 0,7 5 6 7

IAdd (‘L Reg 8, ‘L Reg 7, ‘L Reg 0) 8 8 0 7 0

IStore (‘L Ptr 3, ‘L Reg 8) None

9

c. (10 points) For each of the following optimizations, write down a short sequence of instr s as they might
appear before and after the optimization. You may write ‘L Reg n as rn and ‘ L Int n as n. For example, for
dead code elimination, you might write

Before After
ILoad (r0 , 42) ILoad (r0 , 13)

ILoad (r0 , 13)

i. Common subexpression elimination

Answer:

Before After
IAdd (r0 , r1 , r2) IAdd (r0 , r1 , r2)

IAdd (r3 , r1 , r2) IAdd (r3 , r0)

ii. Constant folding

Answer:

Before After
ILoad (r0 ,5) ILoad (r0 ,5)

ILoad (r1 , r6) ILoad (r1 , r6)

IAdd (r2 , r0 , r1) ILoad (r2,11)

Note that even something as simple as IAdd (r0 , 5, 6) being replaced with ILoad(r0 , 11) would be
considered constant folding, and it’s useful because it may enable further constant propagation.
Also, several people combined constant folding with copy propagation (e.g., eliminating the writes
to r0 and r1 above). This is technically not quite right, as it combines dead code elimination with
constant folding (and assumes that r0 and r1 are dead), but such answers received full credit because
of the wording of the question.

iii. Copy propagation

Answer:

Before After
ILoad (r0 , r1) ILoad (r0 , r1)

ILoad (r2 , r0) ILoad (r2 , r1)

Note that copy propagation involves copies of registers; copying constants would be constant folding.

10

